Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast...Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.展开更多
This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear s...This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear shallow water equations by using an unstructured non-staggered and multiple-level quadtree rectangular mesh,this mesh information is stored in simple data structures and it is easy to obtain a locally high resolution for important region.The intercell fluxes are computed based on the HLL(Harten-Lax-van Leer) approximate Riemann solver with shock capturing capability for computing the dry-to-wet interface of coastal line.The effects of pressure and gravity are included in source term in the model,this treatment can simplify the computation and eliminate numerical imbalance between source and flux terms.The wave model readily provides the radiation stresses that represent the shortwave-averaged forces in a water column for the hydrodynamic model and the wave model takes into account the effect of wave-induced nearshore currents and water level.The coupling model is applied to verify different experimental cases and real life case of considering the wave-current interaction.The calculated results agree with analytical solution,experimental and field data.The results show that the modeling approach presented herein should be useful in simulating the nearshore processes in complicated natural coastal domains.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB825602)National Natural Science Foundation of China(Grant Nos.41231067&41204110) in part by the Specialized Research Fund for State Key Laboratories of China
文摘Derivation of equivalent current systems(ECS)from a global magnetospheric magnetohydrodynamics(MHD)model is very useful in studying magnetosphere-ionosphere coupling,ground induction effects,and space weather forecast.In this study we introduce an improved method to derive the ECS from a global MHD model,which takes account of the obliqueness of the magnetic field lines.By comparing the ECS derived from this improved method and the previous method,we find that the main characteristics of the ECS derived from the two methods are generally consistent with each other,but the eastward-westward component of the geomagnetic perturbation calculated from the ECS derived from the improved method is much stronger than that from the previous method.We then compare the geomagnetic perturbation as a function of the interplanetary magnetic field(IMF)clock angle calculated from the ECS derived from both methods with the observations.The comparison indicates that the improved method can improve the performance of the simulation.Furthermore,it is found that the incomplete counterbalance of the geomagnetic effect produced by the ionospheric poloidal current and field-aligned current(FAC)contributes to most of the eastward-westward component of geomagnetic perturbation.
基金supported by the National Natural Science Foundation of China (Grant No. 50839001)the research grant from Southeast Regional Research Initiative (SERRI,80037)the Coastal Inlets Research Program,ERDC,US Army Corps of Engineers,Vicksburg,MS,USA
文摘This paper presents 2D wave-current interaction model for evaluating nearly horizontal wave-induced currents in the surf-zone and coastal waters.The hydrodynamic model is the two-dimensional depth-averaged nonlinear shallow water equations by using an unstructured non-staggered and multiple-level quadtree rectangular mesh,this mesh information is stored in simple data structures and it is easy to obtain a locally high resolution for important region.The intercell fluxes are computed based on the HLL(Harten-Lax-van Leer) approximate Riemann solver with shock capturing capability for computing the dry-to-wet interface of coastal line.The effects of pressure and gravity are included in source term in the model,this treatment can simplify the computation and eliminate numerical imbalance between source and flux terms.The wave model readily provides the radiation stresses that represent the shortwave-averaged forces in a water column for the hydrodynamic model and the wave model takes into account the effect of wave-induced nearshore currents and water level.The coupling model is applied to verify different experimental cases and real life case of considering the wave-current interaction.The calculated results agree with analytical solution,experimental and field data.The results show that the modeling approach presented herein should be useful in simulating the nearshore processes in complicated natural coastal domains.