A wireless power transfer system for endoscopic micro-robot operating at 36 kHz is presented in this paper. The issue of patient' s health and safety regarding exposure to the electromagnetic field is addressed. The ...A wireless power transfer system for endoscopic micro-robot operating at 36 kHz is presented in this paper. The issue of patient' s health and safety regarding exposure to the electromagnetic field is addressed. The specific absorption rate and current density can be used to investigate the electromagnetic influences on the biological tissues surrounded by the wireless power launching coil. In view of this purpose, the limited close-ound solenoid electromagnetic model is built, the relationship between the electric intensity and the specific absorption rate and current density is deduced, and the simulation experiments are done. Experimental results show that the values of SAR and current density related to different tissue catalogs are all very small and do not exceed their own limits respectively when the resonance frequency of operation is 36 kHz.展开更多
文摘A wireless power transfer system for endoscopic micro-robot operating at 36 kHz is presented in this paper. The issue of patient' s health and safety regarding exposure to the electromagnetic field is addressed. The specific absorption rate and current density can be used to investigate the electromagnetic influences on the biological tissues surrounded by the wireless power launching coil. In view of this purpose, the limited close-ound solenoid electromagnetic model is built, the relationship between the electric intensity and the specific absorption rate and current density is deduced, and the simulation experiments are done. Experimental results show that the values of SAR and current density related to different tissue catalogs are all very small and do not exceed their own limits respectively when the resonance frequency of operation is 36 kHz.