难于阻断直流侧故障电流是典型半桥模块化多电平换流器(half bridge sub module based modular multilevel converter,HBSM-MMC)的固有缺陷,严重影响该类型换流器在直流电网中的应用,因此开展具有直流故障电流阻断能力的MMC拓扑及控制...难于阻断直流侧故障电流是典型半桥模块化多电平换流器(half bridge sub module based modular multilevel converter,HBSM-MMC)的固有缺陷,严重影响该类型换流器在直流电网中的应用,因此开展具有直流故障电流阻断能力的MMC拓扑及控制技术研究意义重大。首先介绍典型HBSM-MMC的拓扑结构及工作原理,阐述其直流侧故障特性及影响机理,对比分析现阶段存在的直流侧故障清除方法及优缺点,指出基于换流器拓扑的自清除方法是解决直流侧故障电流阻断问题的最有效方法之一;通过对国内外MMC拓扑的调研,分别详细研究3类MMC优化拓扑结构及其直流故障隔离和电流阻断机理,对比分析3类优化拓扑的各项参数和功能实现的优缺点,为后续MMC技术在多端直流输电系统和多电压等级直流电网中的应用提供技术参考。展开更多
Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equ...Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equivalent circuits. Therefore, the current interruption method is explored to measure the value of RΩ in direct methanol fuel cells (DMFC) at different temperatures and current densities. It is found that RΩ decreases as temperature increase, and decreases initially and then increases as current density increases. These results are consistent with those measured by the EIS technique. In most cases, the ohmic resistances with current interruption (R iR ) are larger than those with EIS (R EIS ), but the difference is small, in the range from –0.848% to 5.337%. The errors of R iR at high current densities are less than those of R EIS . Our results show that the R iR data are reliable and easy to obtain in the measurement of ohmic resistance in DMFC.展开更多
文摘难于阻断直流侧故障电流是典型半桥模块化多电平换流器(half bridge sub module based modular multilevel converter,HBSM-MMC)的固有缺陷,严重影响该类型换流器在直流电网中的应用,因此开展具有直流故障电流阻断能力的MMC拓扑及控制技术研究意义重大。首先介绍典型HBSM-MMC的拓扑结构及工作原理,阐述其直流侧故障特性及影响机理,对比分析现阶段存在的直流侧故障清除方法及优缺点,指出基于换流器拓扑的自清除方法是解决直流侧故障电流阻断问题的最有效方法之一;通过对国内外MMC拓扑的调研,分别详细研究3类MMC优化拓扑结构及其直流故障隔离和电流阻断机理,对比分析3类优化拓扑的各项参数和功能实现的优缺点,为后续MMC技术在多端直流输电系统和多电压等级直流电网中的应用提供技术参考。
基金Supported by the National High Technology Research and Development Program of China (2007AA05Z150) the National Natural Science Foundation of China (50911140287 50973055)
文摘Electrochemical impedance spectroscopy (EIS) is widely used in fuel cell impedance analysis. However, for ohmic resistance (R Ω), EIS has some disadvantages such as long test period and complex data analysis with equivalent circuits. Therefore, the current interruption method is explored to measure the value of RΩ in direct methanol fuel cells (DMFC) at different temperatures and current densities. It is found that RΩ decreases as temperature increase, and decreases initially and then increases as current density increases. These results are consistent with those measured by the EIS technique. In most cases, the ohmic resistances with current interruption (R iR ) are larger than those with EIS (R EIS ), but the difference is small, in the range from –0.848% to 5.337%. The errors of R iR at high current densities are less than those of R EIS . Our results show that the R iR data are reliable and easy to obtain in the measurement of ohmic resistance in DMFC.