Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized b...Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10^-7 mol·cm^-2·min^-1 and 97.76 kJ·mol^-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.展开更多
Based on the elastic trap-assisted tunneling mechanism in high-κgate stacks,a quantum percolation tunneling current 1/fγ noise model is proposed by incorporating quantum tunneling theory into the quantum percolation...Based on the elastic trap-assisted tunneling mechanism in high-κgate stacks,a quantum percolation tunneling current 1/fγ noise model is proposed by incorporating quantum tunneling theory into the quantum percolation model.We conclude that the noise amplitude of the PSD(Power Spectral Density)for three stages,namely the fresh device,one-layer BD(breakdown),and two-layer BD,increases from 10-22→10-14→10-8 A2/Hz.Meanwhile,the noise exponent γ for the three stages,has the 1/f2type(γ→2),1/fγ type(γ→1~2),and 1/f type(γ→1),respectively.The simulation results are in good agreement with the experimental results.This model reasonably interprets the correlation between the bi-layer breakdown and the tunneling 1/fγ noise amplitude dependence and 1/fγ noise exponent dependence.These results provide a theoretical basis for the high-κ gate stacks bi-layer breakdown noise characterization methods.展开更多
基金Supported by the National Advanced Materials Committee of China(No.715-006-0120)and the National Natural Science Foundation of China(No.59789201).
文摘Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10^-7 mol·cm^-2·min^-1 and 97.76 kJ·mol^-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076101 and 61204092)
文摘Based on the elastic trap-assisted tunneling mechanism in high-κgate stacks,a quantum percolation tunneling current 1/fγ noise model is proposed by incorporating quantum tunneling theory into the quantum percolation model.We conclude that the noise amplitude of the PSD(Power Spectral Density)for three stages,namely the fresh device,one-layer BD(breakdown),and two-layer BD,increases from 10-22→10-14→10-8 A2/Hz.Meanwhile,the noise exponent γ for the three stages,has the 1/f2type(γ→2),1/fγ type(γ→1~2),and 1/f type(γ→1),respectively.The simulation results are in good agreement with the experimental results.This model reasonably interprets the correlation between the bi-layer breakdown and the tunneling 1/fγ noise amplitude dependence and 1/fγ noise exponent dependence.These results provide a theoretical basis for the high-κ gate stacks bi-layer breakdown noise characterization methods.