A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete ...A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.Users can choose nonlinear programming method or branch and bound algorithm to satisfy their different requirements of precision and speed.The experimental results prove that the algorithms can run very fast with lower wiring resources consumption.As a result,the CAD tool based on these algorithms is able to cope with large-scale circuits.展开更多
Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming an...Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.展开更多
文摘A CAD tool based on a group of efficient algorithms to verify,design,and optimize power/ground networks for standard cell model is presented.Nonlinear programming techniques,branch and bound algorithms and incomplete Cholesky decomposition conjugate gradient method (ICCG) are the three main parts of our work.Users can choose nonlinear programming method or branch and bound algorithm to satisfy their different requirements of precision and speed.The experimental results prove that the algorithms can run very fast with lower wiring resources consumption.As a result,the CAD tool based on these algorithms is able to cope with large-scale circuits.
基金Project(51205423)supported by the National Natural Science Foundation of ChinaProject(2012M510205)supported by China Postdoctoral Science Foundation+1 种基金Project(S2012040007715)supported by Natural Science Foundation of Guangdong Province,ChinaProject(20120171120036)supported by New Teachers’Fund for Doctor Stations,Ministry of Education,China
文摘Some novel grooved-sintered composite wick heat pipes(GSHP) were developed for the electronic device cooling.The grooved-sintered wicks of GSHP were fabricated by the processes of oil-filled high-speed spin forming and solid state sintering.The wick could be divided into two parts for liquid capillary pumping flow:groove sintered zone and uniform sintered zone.Both of the thermal resistance network model and the maximum heat transfer capability model of GSHP were built.Compared with the theoretical values,the heat transfer limit and thermal resistance of GSHP were measured from three aspects:copper powder size,wick thickness and number of micro grooves.The results show that the wick thickness has the greatest effect on the thermal resistance of GSHP while the copper powder size has the most important influence on the heat transfer limit.Given certain copper powder size and wick thickness,the thermal resistance of GSHP can be the lowest when micro-groove number is about 55.