It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds th...It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds the limits between 30-200 MHz. Based on asymmetry line antenna theory, a novel far field CM (common mode) radiation model, including an equivalent driving source, radiation structure and some key influence factors, is identified and built up for a small flyback power supply. Radiation characteristics of this model are predicted by using Ansoft HFSS software and the model effectiveness is verified by experiment. In the end, the radiation role of some key factors, such as the length of output cable, common mode impedance of AC grid, layout of cable and reflected ground, are studied using simulation in detail.展开更多
文摘It is well known that a SMPS (switched-mode power supply) is easy to produce strong EMI (electromagnetic interference) and fails in EMC (electromagnetic compatibility) test for its far field radiation exceeds the limits between 30-200 MHz. Based on asymmetry line antenna theory, a novel far field CM (common mode) radiation model, including an equivalent driving source, radiation structure and some key influence factors, is identified and built up for a small flyback power supply. Radiation characteristics of this model are predicted by using Ansoft HFSS software and the model effectiveness is verified by experiment. In the end, the radiation role of some key factors, such as the length of output cable, common mode impedance of AC grid, layout of cable and reflected ground, are studied using simulation in detail.