In this paper, we develop a decentralized algorithm to coord inate a group of mobile robots to search for unknown and transient radio sources. In addition to limited mobility and ranges of communication and sensing, t...In this paper, we develop a decentralized algorithm to coord inate a group of mobile robots to search for unknown and transient radio sources. In addition to limited mobility and ranges of communication and sensing, the robot team has to deal with challenges from signal source anonymity, short transmission duration, and variable transmission power. We propose a two-step approach: First, we decentralize belief functions that robots use to track source locations using checkpoint-based synchronization, and second, we propose a decentralized planning strategy to coordinate robots to ensure the existence of checkpoints. We analyze memory usage, data amount in communication, and searching time for the proposed algorithm. We have implemented the proposed algorithm and compared it with two heuristics. The experimental results show that our algorithm successfully trades a modest amount of memory for the fastest searching time among the three methods.展开更多
Cognitive radio is being widely discussed,and resource allocation scheme is drawing a lot of attention.Although the existed resource allocation strategies have successfully enhanced spectrum efficiency,some critical c...Cognitive radio is being widely discussed,and resource allocation scheme is drawing a lot of attention.Although the existed resource allocation strategies have successfully enhanced spectrum efficiency,some critical challenges still remain unanswered such as the jointly consideration of the efficiency and fairness,the rational description of the spectrum resources,and the execution mode of the spectrum allocation.This paper presents a system level dynamic frequency spectrum allocation scheme based on a central heterogeneous network architecture,evaluates the matching degree of the spectrum demand and the available spectrum resources with corresponding matrices,jointly considers the efficiency and fairness of different cognitive radio systems.Simulation results and the application scenario are also presented and analyzed.展开更多
In order to make full use of wireless spectrum resources,the behavior of cognitive radio(CR)for dynamic spectrum allocation is analyzed based on the game theoretic framework.The traditional spectrum allocation schemes...In order to make full use of wireless spectrum resources,the behavior of cognitive radio(CR)for dynamic spectrum allocation is analyzed based on the game theoretic framework.The traditional spectrum allocation schemes consider the spectrum allocation among independent frequency bands only,without taking into account mutually overlapped frequency bands.For this reason,an optimal allocation etiquette is defined to promote the cross characteristic of the frequency bands in a dynamic spectrum allocation model.New interference operator and interference temperature constraints are introduced in order to realize calculation of the interference,and the corresponding spectrum allocation scenario can be further formulated as a potential game.Based on the characteristic of dynamic selection using the game theory and the interference avoidance rule of interference temperature,the robustness of CR networks is increased and the scenario is more suitable for the dynamic changing of actual wireless communication and energy saving communication systems.Simulation results show that the signal to interference and noise ratio(SINR) level can be significantly improved through the optimal allocation of any available spectrum.The utilization rate of spectrum and throughput of overall CR networks are increased by fully utilizing the spectrum resources in the dynamic spectrum allocation model.展开更多
Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable si...Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.展开更多
The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (...The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.展开更多
Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temper...Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temperature limit of corresponding primary users was considered. Due to the constraints caused by multiple dual channels, the power allocation problem is non-convex and NP-hard. Based on geometric programming (GP), a novel and general algorithm, which turned the problem into a series of GP problems by logarithm approximation (LASGP), was proposed to efficiently solve it. Numerical results verify the efficiency and availability of the LASGP algorithm. Solutions of LASGP are provably convergent and globally optimal point can be observed as well as the channel allocation always outperforms power or timeslot allocation from simulations. Compared with schemes without any allocation, the scheme with joint channel, power and timeslot allocation significantly increases the overall end-to-end throughput by no less than 70% under same simulation conditions. This scheme can not only maximize the throughput by increasing total maximum power of relay node, but also outperform other resource allocation schemes when lower total maximum power of source and relay nodes is restricted. As the total maximum power of source node increases, the scheme with joint channel and timeslot allocation performs best in all schemes.展开更多
Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Ra...Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.展开更多
基金supported in part by the National Science Foundation (IIS1318638 and IIS1426752)the Shenzhen Science and Technology Project (ZDS Y20120617113312191)
文摘In this paper, we develop a decentralized algorithm to coord inate a group of mobile robots to search for unknown and transient radio sources. In addition to limited mobility and ranges of communication and sensing, the robot team has to deal with challenges from signal source anonymity, short transmission duration, and variable transmission power. We propose a two-step approach: First, we decentralize belief functions that robots use to track source locations using checkpoint-based synchronization, and second, we propose a decentralized planning strategy to coordinate robots to ensure the existence of checkpoints. We analyze memory usage, data amount in communication, and searching time for the proposed algorithm. We have implemented the proposed algorithm and compared it with two heuristics. The experimental results show that our algorithm successfully trades a modest amount of memory for the fastest searching time among the three methods.
文摘Cognitive radio is being widely discussed,and resource allocation scheme is drawing a lot of attention.Although the existed resource allocation strategies have successfully enhanced spectrum efficiency,some critical challenges still remain unanswered such as the jointly consideration of the efficiency and fairness,the rational description of the spectrum resources,and the execution mode of the spectrum allocation.This paper presents a system level dynamic frequency spectrum allocation scheme based on a central heterogeneous network architecture,evaluates the matching degree of the spectrum demand and the available spectrum resources with corresponding matrices,jointly considers the efficiency and fairness of different cognitive radio systems.Simulation results and the application scenario are also presented and analyzed.
基金Supported by National Natural Science Foundation of China(No.61371091,61301288)Specialized Research Fund for the Doctoral Programof Higher Education(No.20132125110006)the Fundamental Research Funds for the Central Universities(No.3132013334)
文摘In order to make full use of wireless spectrum resources,the behavior of cognitive radio(CR)for dynamic spectrum allocation is analyzed based on the game theoretic framework.The traditional spectrum allocation schemes consider the spectrum allocation among independent frequency bands only,without taking into account mutually overlapped frequency bands.For this reason,an optimal allocation etiquette is defined to promote the cross characteristic of the frequency bands in a dynamic spectrum allocation model.New interference operator and interference temperature constraints are introduced in order to realize calculation of the interference,and the corresponding spectrum allocation scenario can be further formulated as a potential game.Based on the characteristic of dynamic selection using the game theory and the interference avoidance rule of interference temperature,the robustness of CR networks is increased and the scenario is more suitable for the dynamic changing of actual wireless communication and energy saving communication systems.Simulation results show that the signal to interference and noise ratio(SINR) level can be significantly improved through the optimal allocation of any available spectrum.The utilization rate of spectrum and throughput of overall CR networks are increased by fully utilizing the spectrum resources in the dynamic spectrum allocation model.
基金ACKNOWLEDGEMENTS This work is supported by National Natural Science Foundation of China (No. 61171079). The authors would like to thank the editors and the anonymous reviewers for their detailed constructive comments that helped to improve the presentation of this paper.
文摘Most resource allocation algorithms are based on interference power constraint in cognitive radio networks.Instead of using conventional primary user interference constraint,we give a new criterion called allowable signal to interference plus noise ratio(SINR) loss constraint in cognitive transmission to protect primary users.Considering power allocation problem for cognitive users over flat fading channels,in order to maximize throughput of cognitive users subject to the allowable SINR loss constraint and maximum transmit power for each cognitive user,we propose a new power allocation algorithm.The comparison of computer simulation between our proposed algorithm and the algorithm based on interference power constraint is provided to show that it gets more throughput and provides stability to cognitive radio networks.
基金Projects(51007021, 60402004) supported by the National Natural Science Foundation of China
文摘The bits and power allocation model of adaptive power-rate mixture for multi-user multi-server power-line communication systems was analyzed with the restrictions of maximal total power,fixed rate for each real time (RT) user,minimal rate for each non-real time (NRT) user,maximal bits and power for each subcarrier in each orthogonal frequency division multiplexing (OFDM) symbol. An algorithm of resource dynamic allocation in the first OFDM symbol of each frame and resource optimal adjustment in the latter OFDM symbol of each frame was proposed. In the first OFDM symbol of every frame,resource is firstly assigned for RT users so as to minimize their total used power until satisfying their fixed rates; secondly the remainder resource of power and subcarriers are assigned for NRT users so as to minimize their total used power until satisfying their minimal rates also; lastly the remainder resource is again assigned for NRT users according to the proportional fairness strategy so as to maximize their total assigning rate. In the latter OFDM symbol of each frame,bits are swapped and power is adjusted for every user based on the resource allocation results of anterior OFDM symbol. The algorithm is tested in the typical power-line channel scenarios and the simulation results indicate that the proposed algorithm has better performances than the classical multi-user resource allocation algorithms and it realizes the multiple aims of multi-user multi-server resource allocation for power-line communication systems.
基金Project(60902092) supported by the National Natural Science Foundation of China
文摘Different schemes, which performed channel, power and time allocation to enhance the network performance of overall end-to-end throughput for cooperative cognitive radio network, were investigated. Interference temperature limit of corresponding primary users was considered. Due to the constraints caused by multiple dual channels, the power allocation problem is non-convex and NP-hard. Based on geometric programming (GP), a novel and general algorithm, which turned the problem into a series of GP problems by logarithm approximation (LASGP), was proposed to efficiently solve it. Numerical results verify the efficiency and availability of the LASGP algorithm. Solutions of LASGP are provably convergent and globally optimal point can be observed as well as the channel allocation always outperforms power or timeslot allocation from simulations. Compared with schemes without any allocation, the scheme with joint channel, power and timeslot allocation significantly increases the overall end-to-end throughput by no less than 70% under same simulation conditions. This scheme can not only maximize the throughput by increasing total maximum power of relay node, but also outperform other resource allocation schemes when lower total maximum power of source and relay nodes is restricted. As the total maximum power of source node increases, the scheme with joint channel and timeslot allocation performs best in all schemes.
基金partially supported by the National Natural Science Foundation of China(61571225,61271255,61232016,U1405254)the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science and Technology)(Grant No.KJR1509)+2 种基金the PAPD fundthe CICAEET fundShenzhen Strategic Emerging Industry Development Funds(JSGG20150331160845693)
文摘Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.