Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is propose...Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is proposed in this paper. The new topology can correspond to a 90 plus percent of power converting. So,a novel topology of an state of art integrated circuit, which can be used as power management circuit, has been designed based on the above new topology. A simulator which is specifically suitable for the power controller has been founded in this work and it has been used for the simulation of the novel architecture and the proposed integrated circuit.展开更多
This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabiliz...This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabilized current. For achieving zero-voltage switching, a transition-mode driver L6561 is utilized to detect the ending of transformer resonance and drive an insulated-gate-bipolar-transistor. As transistor is conducted, rectified direct-current voltage drives the transformer. While transistor is cut off, transformer resonates with a parallel capacitor. Transistor conduction time and magnetron power are controlled with a 16-bit digital signal controller dsPIC30F4011. For widening the working range, transistor conduction time is set to be inversely changed with line-frequency input voltage. To demonstrate the analysis and design of this paper, a 1 kW inverter circuit is built. Experimental results show the feasibility and usefulness of the designed magnetron power supply.展开更多
基金supported by Program for New Century Excellent Talents in University(NCET)(2008)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality+1 种基金 (PHR(IHLB)) and Beijing Novel Research Star(2005B01)Ministry of Beijing Science and Technology
文摘Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is proposed in this paper. The new topology can correspond to a 90 plus percent of power converting. So,a novel topology of an state of art integrated circuit, which can be used as power management circuit, has been designed based on the above new topology. A simulator which is specifically suitable for the power controller has been founded in this work and it has been used for the simulation of the novel architecture and the proposed integrated circuit.
文摘This paper presents a transition-mode zero-voltage-switching inverter for the cooker magnetron of household microwave ovens. The inverter drives a leakage transformer to generate the required high voltage and stabilized current. For achieving zero-voltage switching, a transition-mode driver L6561 is utilized to detect the ending of transformer resonance and drive an insulated-gate-bipolar-transistor. As transistor is conducted, rectified direct-current voltage drives the transformer. While transistor is cut off, transformer resonates with a parallel capacitor. Transistor conduction time and magnetron power are controlled with a 16-bit digital signal controller dsPIC30F4011. For widening the working range, transistor conduction time is set to be inversely changed with line-frequency input voltage. To demonstrate the analysis and design of this paper, a 1 kW inverter circuit is built. Experimental results show the feasibility and usefulness of the designed magnetron power supply.