为了降低有轨电车用燃料电池/锂电池混合电源系统的氢气消耗、改善燃料电池功率变化速率以及避免锂电池荷电状态(state of charge,SOC)出现积累式缺电或供电过剩,文章提出了一种基于动态规划(Dynamic Programming,DP)优化的有轨电车用...为了降低有轨电车用燃料电池/锂电池混合电源系统的氢气消耗、改善燃料电池功率变化速率以及避免锂电池荷电状态(state of charge,SOC)出现积累式缺电或供电过剩,文章提出了一种基于动态规划(Dynamic Programming,DP)优化的有轨电车用燃料电池混合电源系统协调控制策略。基于燃料电池混合电源系统模型,建立燃料电池混合电源系统氢气消耗量与燃料电池功率变化率的目标函数,引入荷电状态惩罚函数以约束SOC始末值相等,通过DP全局优化寻找燃料电池与锂电池功率最佳分配序列,实现燃料电池混合电源系统协调控制。基于燃料电池混合电源仿真系统进行试验验证,结果表明:相较于有限状态机控制方法,燃料经济性提高了44.8%,燃料电池输出功率在20~60 kW的概率为64.16%,并且变化率明显改善,锂电池SOC始末值基本保持一致,验证了本文所提策略的有效性和优越性。展开更多
文摘为了降低有轨电车用燃料电池/锂电池混合电源系统的氢气消耗、改善燃料电池功率变化速率以及避免锂电池荷电状态(state of charge,SOC)出现积累式缺电或供电过剩,文章提出了一种基于动态规划(Dynamic Programming,DP)优化的有轨电车用燃料电池混合电源系统协调控制策略。基于燃料电池混合电源系统模型,建立燃料电池混合电源系统氢气消耗量与燃料电池功率变化率的目标函数,引入荷电状态惩罚函数以约束SOC始末值相等,通过DP全局优化寻找燃料电池与锂电池功率最佳分配序列,实现燃料电池混合电源系统协调控制。基于燃料电池混合电源仿真系统进行试验验证,结果表明:相较于有限状态机控制方法,燃料经济性提高了44.8%,燃料电池输出功率在20~60 kW的概率为64.16%,并且变化率明显改善,锂电池SOC始末值基本保持一致,验证了本文所提策略的有效性和优越性。