The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorit...The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.展开更多
Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensi...Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensive exploration area makes it difficult to maintain contact with operators. AUVs depend on batteries, so their power consumption should be reduced to extend exploration time. Power for conventional marine instrument systems is incorporated in their waterproof sealing. External intermittent control of this power source until termination of exploration is challenging due to limitations imposed by the underwater environment. Thus, the AUV must have a power control system that can improve performance and maximize use of battery capacity. The authors developed such a power control system with a three-step algorithm. It automatically detects underwater operational states and can limit power, effectively decreasing power consumption by about 15%.展开更多
The hybrid-HVDC topology,which consists of line-commutated-converter(LCC)and voltage source converter(VSC)and combines their advantages,has extensive application prospects.A hybrid-HVDC system,adopting VSC on rectifie...The hybrid-HVDC topology,which consists of line-commutated-converter(LCC)and voltage source converter(VSC)and combines their advantages,has extensive application prospects.A hybrid-HVDC system,adopting VSC on rectifier side and LCC on inverter side,is investigated,and its mathematic model is deduced.The commutation failure issue of the LCC converter in the hybrid-HVDC system is considered,and a novel coordinated control method is proposed to enhance the system commutation failure immunity.A voltage dependent voltage order limiter(VDVOL)is designed based on the constant DC voltage control on the rectifier side,and constant extinction angle backup control is introduced based on the constant DC current control with voltage dependent current order limiter(VDCOL)on the inverter side.The hybrid-HVDC system performances under normal operation state and fault state are simulated in the PSCAD/EMTDC.Then,system transient state performances with or without the proposed control methods under fault condition are further compared and analyzed.It is concluded that the proposed control method has the ability to effectively reduce the probability of commutation failure and improve the fault recovery performance of the hybrid-HVDC system.展开更多
文摘The proposed controller incorporates FL (fuzzy logic) algorithm with ANN (artificial neural network). ANFIS replaces the conventional PI controller, tuning the fuzzy inference system with a hybrid learning algorithm. A tuning method is proposed for training of the neuro-fuzzy controller. The best rule base and the best training algorithm chosen produced high performance in the ANFIS controller. Simulation was done on Matlab Ver. 2010a. A case study was chopper-fed DC motor drive, in continuous and discrete modes. Satisfactory results show the ANFIS controller is able to control dynamic highly-nonlinear systems. Tuning it further improved the results.
文摘Valuable mineral resources are widely distributed throughout the seabed. autonomous underwater vehicles (AUVs) are preferable to remotely-operated vehicles (ROVs) when probing for such mineral resources as the extensive exploration area makes it difficult to maintain contact with operators. AUVs depend on batteries, so their power consumption should be reduced to extend exploration time. Power for conventional marine instrument systems is incorporated in their waterproof sealing. External intermittent control of this power source until termination of exploration is challenging due to limitations imposed by the underwater environment. Thus, the AUV must have a power control system that can improve performance and maximize use of battery capacity. The authors developed such a power control system with a three-step algorithm. It automatically detects underwater operational states and can limit power, effectively decreasing power consumption by about 15%.
基金supported by the National High Technology Research and Development Program of China("863" Program)(Grant No.2013AA050105)the National Natural Science Foundation of China(Grant No.51177042)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.13QN03)2012 science and technology projects of State Grid Corporation of China(Grant No.XT71-12-015)
文摘The hybrid-HVDC topology,which consists of line-commutated-converter(LCC)and voltage source converter(VSC)and combines their advantages,has extensive application prospects.A hybrid-HVDC system,adopting VSC on rectifier side and LCC on inverter side,is investigated,and its mathematic model is deduced.The commutation failure issue of the LCC converter in the hybrid-HVDC system is considered,and a novel coordinated control method is proposed to enhance the system commutation failure immunity.A voltage dependent voltage order limiter(VDVOL)is designed based on the constant DC voltage control on the rectifier side,and constant extinction angle backup control is introduced based on the constant DC current control with voltage dependent current order limiter(VDCOL)on the inverter side.The hybrid-HVDC system performances under normal operation state and fault state are simulated in the PSCAD/EMTDC.Then,system transient state performances with or without the proposed control methods under fault condition are further compared and analyzed.It is concluded that the proposed control method has the ability to effectively reduce the probability of commutation failure and improve the fault recovery performance of the hybrid-HVDC system.