This paper proposes new interference estimation for power control in broadband wireless data networks. The proposed approach gives the filtered interference power in real-time removing undesired effects such as the fl...This paper proposes new interference estimation for power control in broadband wireless data networks. The proposed approach gives the filtered interference power in real-time removing undesired effects such as the fluctuation of interference power and the measurement noise due to receiver noise. The well-known Finite Impulse Response (FIR) structure filter is adopted for both the interference and the noise covarianee estimation. The proposed mechanism provides both the filtered interference power and the filtered number of active co-channel interferers, which shows good inherent properties. And the filtered interference power is not affected by the constant number of active co-channel interferes. It is also shown that the filtered number of active co-channel interference is separated from the filtered interference power. From discussions about the choice of design parameters such as window length and eovariance ratio, they can make the estimation performance of the proposed FIR filtering based mechanism as good as possible. Via extensive computer simulations, the performance of the proposed mechanism is shown to be superior to the existing Kalman filtering based mechanism.展开更多
文摘This paper proposes new interference estimation for power control in broadband wireless data networks. The proposed approach gives the filtered interference power in real-time removing undesired effects such as the fluctuation of interference power and the measurement noise due to receiver noise. The well-known Finite Impulse Response (FIR) structure filter is adopted for both the interference and the noise covarianee estimation. The proposed mechanism provides both the filtered interference power and the filtered number of active co-channel interferers, which shows good inherent properties. And the filtered interference power is not affected by the constant number of active co-channel interferes. It is also shown that the filtered number of active co-channel interference is separated from the filtered interference power. From discussions about the choice of design parameters such as window length and eovariance ratio, they can make the estimation performance of the proposed FIR filtering based mechanism as good as possible. Via extensive computer simulations, the performance of the proposed mechanism is shown to be superior to the existing Kalman filtering based mechanism.