To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC....To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.展开更多
In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the susta...In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the sustainable deployment of new profitable applications and services in heterogeneous wireless networks coexistence reality, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics according to actual user/service requirements in different geographic areas. Some idle or lightly-loaded base stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show that the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.展开更多
The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/trib...The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.展开更多
文摘To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.
基金supported by the National Natural Science Foundation of China ( NSFC)( No. 60902041)Chinese Academy of Sciences ( No. 2010045)the Ministry of Science and Technology( MOST) of China ( No. 2010DFB10410,No. 2009DFB13080 and No. 2009ZX03003-009)
文摘In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce electra magnetic interference (EMI) and radiation pollution, and enable the sustainable deployment of new profitable applications and services in heterogeneous wireless networks coexistence reality, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics according to actual user/service requirements in different geographic areas. Some idle or lightly-loaded base stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show that the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.
基金supported by the National Natural Science Foundation of China(Grant Nos.61525107,51422510&51605449)the National High Technology Research and Development Program of China(Grant No.2015AA042601)
文摘The combination of new intelligent materials and structure technology is becoming an effective way in energy havesting and self-powered sensing. In this work, we demonstrate a magnetically levitated/piezoelectric/triboelectric hybrid generator, which does not use complex structure and has high steady output performance. It includes three parts: magnetically levitated generator(MLG), piezoelectric generator(PNG), triboelectric nanogenerator(TENG). The peak power of each is 135 μW, 22 mW and3.6 mW, which are obtained at 1 MΩ, 10 kΩ and 1 kΩ, respectively. The hybrid generator can completely light up light-emitting diodes(LEDs) under the vibration frequency of 20 Hz and the vibration amplitude of 10 mm. It also can charge a 470 μF capacitor.On this basis, we have integrated the hybrid generaor as a power supply into a self-powered tempreature sensing system. The combination of three generators can not only broaden the operating range, but also increase the operating length and sensitivity.This work will extend the application of self-powered sensor in automatic production line and promote the development of industrial control technology.