设计并实现了一种采用进口电火花技术加工的D波段电感膜片耦合的矩形波导空腔滤波器。采用等效电路法设计了一个140 GHz矩形空腔带通滤波器。采用有限元仿真软件HFSS分析了腔体个数对滤波器主要性能的影响,最终成功设计了一个性能优良...设计并实现了一种采用进口电火花技术加工的D波段电感膜片耦合的矩形波导空腔滤波器。采用等效电路法设计了一个140 GHz矩形空腔带通滤波器。采用有限元仿真软件HFSS分析了腔体个数对滤波器主要性能的影响,最终成功设计了一个性能优良的四阶空腔滤波器,中心频率(140±3)GHz,带内插入损耗S21在-3 d B以内,回波损耗S11在-20 d B以下。采用电火花微加工技术成功加工出了四阶滤波器的主体部分,相应完成了结构键合等关键工艺,首次制作了基于电火花技术的D波段矩形波导空腔滤波器。测试结果为中心频率(138.5±3)GHz,带内插入损耗最好达到了-4.4 d B。结果表明滤波器在140GHz具有带通特性和滤波功能,尽管与理论上的-3 d B有差异,但考虑到加工误差、夹具损耗等情况下,样品主要技术指标与设计值较为一致。展开更多
The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were...The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.展开更多
In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems a...In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.展开更多
Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool ele...Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool electrode after tool wear in micro EDM. According to the skin effect theory, the tool end shape in the stage of uniform wear can be changed by adjusting the frequency of discharge pulse. The electrical energy distributing rule of tool electrode section in RC circuit has been investigated under the influence of skin effect, and the law of spark location change has been summarized. The experimental studies demonstrate that different shapes of tool ends can be achieved by varying the pulse frequencies of discharge power supply. Additionally, a micro part of freeform surface feature with high precision and good surface quality has been successfully obtained by micro EDM through adopting the smooth surface after tool wear.展开更多
Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM ski...Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.展开更多
文摘设计并实现了一种采用进口电火花技术加工的D波段电感膜片耦合的矩形波导空腔滤波器。采用等效电路法设计了一个140 GHz矩形空腔带通滤波器。采用有限元仿真软件HFSS分析了腔体个数对滤波器主要性能的影响,最终成功设计了一个性能优良的四阶空腔滤波器,中心频率(140±3)GHz,带内插入损耗S21在-3 d B以内,回波损耗S11在-20 d B以下。采用电火花微加工技术成功加工出了四阶滤波器的主体部分,相应完成了结构键合等关键工艺,首次制作了基于电火花技术的D波段矩形波导空腔滤波器。测试结果为中心频率(138.5±3)GHz,带内插入损耗最好达到了-4.4 d B。结果表明滤波器在140GHz具有带通特性和滤波功能,尽管与理论上的-3 d B有差异,但考虑到加工误差、夹具损耗等情况下,样品主要技术指标与设计值较为一致。
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
基金Project(2010-0008-277) supported by Program of Establishment of an Infrastructure for Public Usepartly by NCRC (National Core Research Center) through the National Research Foundation of Korea funded by the Ministry of Education
文摘The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA04Z346) , the National Natural Science Foundation of China ( No. 50905094) and China Postdoctoral Science Foundation ( No. 20080440378, 200902097).
文摘In micro electrical discharge machining (micro EDM), it is difficult for servo controlling the narrow discharge gap with the characters of non-linear and quick change. In this paper, aiming at solving the problems above, a self-adaptive fuzzy controller with formulary rule (SAFCFR) is presented based on the dual feedbacks composed by gap electric signal and discharge-ratio statistics. To ensure the properties of self-optimizing and fast stabilization, the formulary rule was designed with a tuning factor. In addition, the fast-convergence algorithms were introduced to adjust control target center and output scale factor. In this way, the normal discharge ratio can tend to the highest value during micro-EDM process. Experimental results show that the proposed algorithms are effective in improving the servo-control performance. According to the drilling-micro-EDM experiments, the machining efficiency is improved by 20% through applying SAFCFR. Moreover, SAFCFR is a prompt way to optimize parameters of discharge-gap servo control.
基金Supported by the National Natural Science Foundation of China (50635040) and the National Science Foundation of USA(CMMI-0728294 and CMMI- 0928873)
文摘Micro fabrication of freeform surface parts made of hard and brittle materials is always a tough job in micro machining field. This paper tries to fabricate freeform surface feature by using smooth surface of tool electrode after tool wear in micro EDM. According to the skin effect theory, the tool end shape in the stage of uniform wear can be changed by adjusting the frequency of discharge pulse. The electrical energy distributing rule of tool electrode section in RC circuit has been investigated under the influence of skin effect, and the law of spark location change has been summarized. The experimental studies demonstrate that different shapes of tool ends can be achieved by varying the pulse frequencies of discharge power supply. Additionally, a micro part of freeform surface feature with high precision and good surface quality has been successfully obtained by micro EDM through adopting the smooth surface after tool wear.
基金Supported by the National Natural Science Foundation of China(Nos.41206111,41206112)
文摘Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.