Guan Yu is one of the most prominent figures in Chinese traditional culture and revered as"Martial Sage",enjoyin the equal status as Confucius who is hailed as"Literary Sage".Sacrificial practices ...Guan Yu is one of the most prominent figures in Chinese traditional culture and revered as"Martial Sage",enjoyin the equal status as Confucius who is hailed as"Literary Sage".Sacrificial practices showing respect for Guan Yu have always been carried out since ancient times and have had broad and far-reaching impacts on the sphere of the Oriental Civilization and in particular,the Chinese community worldwide.展开更多
Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and ...Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.展开更多
To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cath...To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC.展开更多
Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstru...Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).展开更多
In order to meet the electrical and thermal performance requirements of current high performance optoelectronics, two package types with dual-in-line package(DIP) and ball grid array(BGA) for optoelectronics are model...In order to meet the electrical and thermal performance requirements of current high performance optoelectronics, two package types with dual-in-line package(DIP) and ball grid array(BGA) for optoelectronics are modeled and thermally simulated, their thermal characterizations are compared and discussed by using the temperature contours and the simulated heating characterization curves in free air and forced air ambient. The results show that BGA has superior inside and outside total performances, and has the promising future in the highly integrated optoelectronics.展开更多
New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if th...New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.展开更多
The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell o...The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable.展开更多
OBJECTIVE:To explore the concept of classification and reduction manipulation of fractures in Chinese traditional Mongolian osteopathy.METHODS:Based on the linear classification of fractures in Chinese traditional Mon...OBJECTIVE:To explore the concept of classification and reduction manipulation of fractures in Chinese traditional Mongolian osteopathy.METHODS:Based on the linear classification of fractures in Chinese traditional Mongolian osteopathy and the practice of reduction manipulation,a dynamic classification and reduction manipulation concept of fractures was established with the use of modern biomechanical principles and methods.RESULTS:We classified the linear classification and reduction manipulation of fractures in Chinese traditional Mongolian osteopathy based on the achievement of fracture line and used the cause of the formation of the fracture line for our dynamic classification and reduction manipulation of fractures concept.CONCLUSION:The etiology of the formation of fracture lines can be used to decrease diagnostic error,increase therapeutic effects of manipulation,and further provide a new concept and method for the development of the reduction concept of fractures.展开更多
文摘Guan Yu is one of the most prominent figures in Chinese traditional culture and revered as"Martial Sage",enjoyin the equal status as Confucius who is hailed as"Literary Sage".Sacrificial practices showing respect for Guan Yu have always been carried out since ancient times and have had broad and far-reaching impacts on the sphere of the Oriental Civilization and in particular,the Chinese community worldwide.
文摘Time-dependent thermal simulation of ridge-geometry InGaN laser diodes is carried out with a two-dimensional model. A high temperature in the waveguide layer and a large temperature step between the regions under and outside the ridge are generated due to the poor thermal conductivity of the sapphire substrate and the large threshold current and voltage. The temperature step is thought to have a strong influence on the characteristics of the laser diodes. Time-resolved measurements of light-current curves,spectra, and the far-field pattern of the InGaN laser diodes under pulsed operation are performed. The results show that the thermal lensing effect improves the confinement of the higher order modes and leads to a lower threshold current and a higher slope efficiency of the device while the high temperature in the active layer results in a drastic decrease in the slope efficiency.
基金Project(51674302)supported by the National Natural Science Foundation of China。
文摘To solve the problems of high energy consumption,low efficiency and short service life of conventional rare earth reduction cells,a 20 kA new rare earth reduction cell(NRERC)was presented.The effects of the anode-cathode distance(ACD)and electrolyte height(EH)on the thermo-electrical behavior of the NRERC were studied by ANSYS.The results illustrate that the cell voltage drop(CVD)and the temperature will rise with a similar tendency when the ACD increases.Also,the temperature rises gradually with EH,but the CVD decreases.Ultimately,when the ACD is 115 mm and the EH is 380 mm,the CVD is 4.61 V and the temperature is 1109.8℃.Under these conditions,the thermal field distribution is more reasonable and the CVD is lower,which is beneficial to the long service life and low energy consumption of the NRERC.
文摘Hot compression of 7050 aluminum alloy was performed on Gleeble 1500D thermo-mechanical simulator at 350 ℃ and 450 ℃ with a constant strain rate of 0.1 s-1 to different nominal strains of 0.1, 0.3 and 0.7. Microstructures of 7050 alloy under various compression conditions were observed by TEM to investigate the microstructure evolution process of the alloy deformed at various temperatures. The microstructure evolves from dislocation tangles to cell structure and subgrain structure when being deformed at 350 ℃, of which dynamic recovery is the softening mechanism. However, continuous dynamic recrystallization (DRX) occurs during hot deformation at 450 ℃, in which the main nucleation mechanisms of DRX are subgrain growth and subgrain coalescence rather than particle-simulated nucleation (PSN).
基金National Defense Foundation of China(51419020401 HK01)
文摘In order to meet the electrical and thermal performance requirements of current high performance optoelectronics, two package types with dual-in-line package(DIP) and ball grid array(BGA) for optoelectronics are modeled and thermally simulated, their thermal characterizations are compared and discussed by using the temperature contours and the simulated heating characterization curves in free air and forced air ambient. The results show that BGA has superior inside and outside total performances, and has the promising future in the highly integrated optoelectronics.
文摘New alternatives and inventive renewable energy techniques which encompass both generation and power management solutions are fundamental for meeting remote residential energy supply and demand today, especially if the grid is quasi-inexistent. Solar thermoelectric generators mounted on a dual-axis sun tracker can be a cost-effective alternative to photovoltaics for remote residential household power generation. A complete solar thermoelectric energy harvesting system is presented in this paper for energy delivery to remote residential areas in developing regions. To this end, the entire system was built, modeled, and then validated with the LTspice simulator software via the thermal-to-electrical analogy schemes. Valuable data in conjunction with a novel LTspice circuit were obtained, showing the achievability of analyzing transient heat transfer with the SPICE simulator; however a few of the problems to be solved remain at the practical level. Despite the unusual operation of the thermoelectric modules with the solar radiation, the simulation and measurements were in good agreement, thus validating the new modeling strategy.
文摘The purpose of this study is to verify an 1D multi-plate heat-transfer model estimating the temperature distribution on the interface between polymer electrolyte membrane and catalyst layer at cathode in single cell of polymer electrolyte fuel cell, which is named as reaction surface in this study, with a 3D numerical simulation model solving many governing equations on the coupling phenomena in the cell. The results from both models/simulations agreed well. The effects of initial operation temperature, flow rate, and relative humidity of supply gas on temperature distribution on the reaction surface were also investigated. It was found in both 1D and 3D simulations that, the temperature rise (i.e., Treact-Tini) of the reaction surface from initial operation temperature at 70℃ was higher than that at 80℃ irrespective of flow rate of supply gas. The effect of relative humidity of supply gas on Treact- Tini near the inlet of the cell was small. Compared to the previous studies conducted under the similar operation conditions, the Treact - Tini calculated by 1D multi-plate heat-transfer model in this study as well as numerical simulation using 3D model was reasonable.
基金Supported by the National Nature Science Fund of China(No.81260513)Inner Mongolian Science and Technology Plan Key Program(2010-2013)
文摘OBJECTIVE:To explore the concept of classification and reduction manipulation of fractures in Chinese traditional Mongolian osteopathy.METHODS:Based on the linear classification of fractures in Chinese traditional Mongolian osteopathy and the practice of reduction manipulation,a dynamic classification and reduction manipulation concept of fractures was established with the use of modern biomechanical principles and methods.RESULTS:We classified the linear classification and reduction manipulation of fractures in Chinese traditional Mongolian osteopathy based on the achievement of fracture line and used the cause of the formation of the fracture line for our dynamic classification and reduction manipulation of fractures concept.CONCLUSION:The etiology of the formation of fracture lines can be used to decrease diagnostic error,increase therapeutic effects of manipulation,and further provide a new concept and method for the development of the reduction concept of fractures.