The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced ...The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50 °C, increases relatively by 4% when ambient temperature decreases from 15 °C to ?20 °C, and decreases relatively by 13% with temperature increasing by 88 °C. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing.展开更多
This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming ...This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming to a clean and sustainable energy system. The main TIRFE technologies are: cogeneration of H2 and EE (electric energy) by H2-BGSCW/TEU (biomass gasification in supercritical water integrated with a thermoelectric unit); use of H2 from biomass in oil refinery processes for production of light and clean derivatives; supply of 1-12 deficiency for methanol production from coal; carbon sequestration by a basket of technologies (exhausted petroleum and gas) wells, underground saline aquifers, forests and stockpile of cellulignin-CL-produced from forest residues); use of H2-BGSCW/TEU as district CHP (combined heat and power) with photovoltaic panels for EE, including electric car battery recharge; optimization of energy consumption by verticalization of the cities replacing low strength materials (bricks and common cement) by high performance concrete with addition of silica from rice husk. TIRFE helps to solve key problems of H2-BGSCW/TEU, such as materials, energy recovery, plugging, corrosion, economics and energy security for the first generation of plants, and organizes the development for the second generation. TIRFE can be incrementally implanted in existent and new cities.展开更多
基金Funded by key project of the National Natural Science Foundation of China (50238040).
文摘The influences of curing time, the content of free evaporable water in cement paste, environmental temperature, and alternative heating and cooling on the electrical resistance of high content carbon fiber reinforced cement (CFRC) paste are studied by experiments with specimens of Portland cement 42.5 with 10 mm PAN-based carbon fiber and methylcellulose. Experimental results indicate that the electrical resistance of CFRC increases relatively by 24% within a hydration time of 90 d and almost keeps constant after 14 d, changes hardly with the mass loss of free evaporable water in the concrete dried at 50 °C, increases relatively by 4% when ambient temperature decreases from 15 °C to ?20 °C, and decreases relatively by 13% with temperature increasing by 88 °C. It is suggested that the electric resistance of the CFRC is stable, which is testified by the stable power output obtained by electrifying the CFRC slab with a given voltage. This implies that such kind of high content carbon fiber reinforced cement composite is potentially a desirable electrothermal material for airfield runways and road surfaces deicing.
文摘This paper presents a new concept of TIRFE (total integration of renewable and fossil energies), represented by an octagonal structure of all sources, vectors of transmission and optimization of consumption, aiming to a clean and sustainable energy system. The main TIRFE technologies are: cogeneration of H2 and EE (electric energy) by H2-BGSCW/TEU (biomass gasification in supercritical water integrated with a thermoelectric unit); use of H2 from biomass in oil refinery processes for production of light and clean derivatives; supply of 1-12 deficiency for methanol production from coal; carbon sequestration by a basket of technologies (exhausted petroleum and gas) wells, underground saline aquifers, forests and stockpile of cellulignin-CL-produced from forest residues); use of H2-BGSCW/TEU as district CHP (combined heat and power) with photovoltaic panels for EE, including electric car battery recharge; optimization of energy consumption by verticalization of the cities replacing low strength materials (bricks and common cement) by high performance concrete with addition of silica from rice husk. TIRFE helps to solve key problems of H2-BGSCW/TEU, such as materials, energy recovery, plugging, corrosion, economics and energy security for the first generation of plants, and organizes the development for the second generation. TIRFE can be incrementally implanted in existent and new cities.