With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are ...With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.展开更多
The electrodeposition of aluminium on glassy carbon and aluminium substrates from AlCl3-urea deep eutectic solvent(DES) system at near room temperatures was investigated,without additional purification of the chemical...The electrodeposition of aluminium on glassy carbon and aluminium substrates from AlCl3-urea deep eutectic solvent(DES) system at near room temperatures was investigated,without additional purification of the chemicals used to prepare the electrolyte and without rigorous control of moisture and oxygen present in the working space.The effects of changing temperature,working potential,controlled deposition current density and deposition time on the morphology of deposited aluminium without stirring of the electrolyte were recorded.Using potentiostatic and galvanostatic techniques,aluminium was electrodeposited from the deep eutectic solvent(n(AlCl3):n(urea)=1.6:1) onto glassy carbon and aluminium substrates at temperatures ranging from 25 to 50℃.Using SEM,EDS and XRD techniques,substrates were studied and confirmed the presence of aluminium deposits following both potentiostatic and galvanostatic regimes.The shape and size of Al grains deposited depended on the time of deposition and varied in size from nanometers to micrometers and in shape from regular crystal forms to needle-like and flake-like structures.展开更多
The main objective of this work was to use reline deep eutectic solvent,containing Al(III)ions,for the electrochemical study of the nucleation and growth of aluminum onto a glassy carbon electrode at different tempera...The main objective of this work was to use reline deep eutectic solvent,containing Al(III)ions,for the electrochemical study of the nucleation and growth of aluminum onto a glassy carbon electrode at different temperatures and angular speeds(ω)of the working electrode.In order to fulfill this,electrochemical and surface characterization techniques were used.It was found that as temperature increased,the onset of the Al(III)DES reduction occurred at less negative potentials while the current peak of the voltammograms increased.These indicate that Al deposition thermodynamics and kinetics were favored.Practically,no anodic current was detected due to Al passivation by Al(OH)_(3)(s)andγ-Al_(2)O_(3)(s).Atω=0 r/min,the Al deposition chronoamperograms were analyzed by a theoretical model comprising Al 3D diffusion-controlled nucleation and growth and residual water reduction.However,those recorded at different angular speeds were analyzed with a theoretical model where adsorption−desorption and diffusion-controlled nucleation−growth occurred simultaneously.The deposits were characterized by SEM,EDX,XPS and XRD.Atω=0 r/min,formation of well distributed nanoparticles((78.1±9.5)nm)was observed,while atω=900 r/min the deposit was formed by multiple 10μm diameter leaf-like flat microstructures,composed by Al,Al(OH)_(3)(s)andγ-A2O3(s).展开更多
A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fu...A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.展开更多
Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 a...Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 and Cr2O3) on the crystallization kinetics and heat treatment schedule of the slag were investigated. The results show that the nucleating agents changed the crystallization phase and morphology of the obtained glass-ceramics. The optimum heat treatment schedule of the glass with TiO2 was determined as nucleation at 952 K for 1.5 h and crystal growth at 1 258 K for 1.5 h, while those values with Cr203 were estimated at 971 K for 2 h and at 1 238 K for 2 h. TiO2 acting as nucleating agent could decrease the activation energy of the slag and shorten the total thermal treatment time in comparison with Cr2O3. The glass-ceramics obtained under the optimum heat treatment condition was environmentfriendly and had remarkable physical/mechanical properties and chemical durability.展开更多
Using self-flux method,we have successfully grown the parent phase of the single crystals of CaFeAsF1-x.The X-ray di?raction indicates good crystallinity.In-plane resistivity shows a bad metallic behavior with a sharp...Using self-flux method,we have successfully grown the parent phase of the single crystals of CaFeAsF1-x.The X-ray di?raction indicates good crystallinity.In-plane resistivity shows a bad metallic behavior with a sharp drop of resistivity at about T SDW=119K.This anomaly is associated with the possible spin density wave(SDW)order.Interestingly near T SDW,the resistivity exhibits a cusp-like feature,which may be understood as the strong coupling effect between the electrons and the antiferromagnetic(AF)spin fluctuations.A reduction of fluorine or application of a high pressure will suppress the SDW feature and induce superconductivity.Hall effect measurements reveal a positive Hall coefficient below T SDW indicating a dominant role of the hole-like charge carriers in the parent phase.Strong magnetoresistance has been observed below T SDW suggesting multiple conduction channels of the charge carriers.展开更多
基金This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05016 and No.2016ZX05046).
文摘With the blooming development of electronic technology,the use of electron conductive gel or ionic conductive gel in preparing flexible electronic devices is drawing more and more attention.Deep eutectic solvents are excellent substitutes for ionic liquids because of their good biocompatibility,low cost,and easy preparation,except for good conductivity.In this work,we synthesized a reactive quaternary ammonium monomer(3-acrylamidopropyl)octadecyldimethyl ammonium bromide with a hydrophobic chain of 18 carbons via the quaternization of 1-bromooctadecane and N-dimethylaminopropyl acrylamide at first,then we mixed quaternary ammonium with choline chloride,acrylic acid and glycerol to obtain a hydrophobic deep eutectic solvent,and initialized polymerization in UV light of 365 nm to obtain the ionic conductive eutectogel based on polyacrylamide copolymer with long hydrophobic chain.The obtained eutectogel exibits good stretchability(1200%),Young's modulus(0.185 MPa),toughness(4.2 MJ/m^(3)),conductivity(0.315 S/m).The eutectogel also shows desireable moisture resistance with the maximum water absorption of 11.7 wt%after one week at 25℃and 60%humidity,while the water absorption of eutectogel without hydrophobic long chains is 24.0 wt%.The introduction of long-chain hydrophobic groups not only improves the mechanical strength of the gels,but also significantly improves moisture resistance of the eutectogel.This work provides a simpler and more effective method for the preparation of ionic conductive eutectogels,which can further provide a reference for the applications of ionic conductive eutectogels in the field of flexible electronic devices.
基金supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 172060)
文摘The electrodeposition of aluminium on glassy carbon and aluminium substrates from AlCl3-urea deep eutectic solvent(DES) system at near room temperatures was investigated,without additional purification of the chemicals used to prepare the electrolyte and without rigorous control of moisture and oxygen present in the working space.The effects of changing temperature,working potential,controlled deposition current density and deposition time on the morphology of deposited aluminium without stirring of the electrolyte were recorded.Using potentiostatic and galvanostatic techniques,aluminium was electrodeposited from the deep eutectic solvent(n(AlCl3):n(urea)=1.6:1) onto glassy carbon and aluminium substrates at temperatures ranging from 25 to 50℃.Using SEM,EDS and XRD techniques,substrates were studied and confirmed the presence of aluminium deposits following both potentiostatic and galvanostatic regimes.The shape and size of Al grains deposited depended on the time of deposition and varied in size from nanometers to micrometers and in shape from regular crystal forms to needle-like and flake-like structures.
基金CONACyT for the scholarship granted to pursue postgraduate studiesCONACyT for Project 258487CONACyT for the support given to undertake a postdoctoral stay through Project 258487。
文摘The main objective of this work was to use reline deep eutectic solvent,containing Al(III)ions,for the electrochemical study of the nucleation and growth of aluminum onto a glassy carbon electrode at different temperatures and angular speeds(ω)of the working electrode.In order to fulfill this,electrochemical and surface characterization techniques were used.It was found that as temperature increased,the onset of the Al(III)DES reduction occurred at less negative potentials while the current peak of the voltammograms increased.These indicate that Al deposition thermodynamics and kinetics were favored.Practically,no anodic current was detected due to Al passivation by Al(OH)_(3)(s)andγ-Al_(2)O_(3)(s).Atω=0 r/min,the Al deposition chronoamperograms were analyzed by a theoretical model comprising Al 3D diffusion-controlled nucleation and growth and residual water reduction.However,those recorded at different angular speeds were analyzed with a theoretical model where adsorption−desorption and diffusion-controlled nucleation−growth occurred simultaneously.The deposits were characterized by SEM,EDX,XPS and XRD.Atω=0 r/min,formation of well distributed nanoparticles((78.1±9.5)nm)was observed,while atω=900 r/min the deposit was formed by multiple 10μm diameter leaf-like flat microstructures,composed by Al,Al(OH)_(3)(s)andγ-A2O3(s).
基金Supported by Shanghai Science and Technology Development (No. 993012003) and the National Natural Science Foundation of China (No.50206012).
文摘A three dimension of dynamic mathematical model of the molten carbonate fuel cell is established,in which the heat generation, mass transfer and electrochemical characteristics are described. The performance of the fuel cell including the distributions of the temperature and the velocity is predicted numerically. Then the experimental data including the output performance of the fuel cell generation system and the temperature distributions are compared. The numerical results are in agreement with the experiment results.
基金Supported by the National Natural Science Foundation of China(No.51378332 and No.20806051)Science and Technology Project of Housing and Urban-Rural Ministry(No.2014-K4-014)Chinese Postdoctoral Science Foundation(No.2013M530872)
文摘Glass-ceramics obtained from the electric arc furnace molten slag of incinerator fly ash was produced by applying nucleation and crystallization through heat treatment process. The effects of nucleating agent (TiO2 and Cr2O3) on the crystallization kinetics and heat treatment schedule of the slag were investigated. The results show that the nucleating agents changed the crystallization phase and morphology of the obtained glass-ceramics. The optimum heat treatment schedule of the glass with TiO2 was determined as nucleation at 952 K for 1.5 h and crystal growth at 1 258 K for 1.5 h, while those values with Cr203 were estimated at 971 K for 2 h and at 1 238 K for 2 h. TiO2 acting as nucleating agent could decrease the activation energy of the slag and shorten the total thermal treatment time in comparison with Cr2O3. The glass-ceramics obtained under the optimum heat treatment condition was environmentfriendly and had remarkable physical/mechanical properties and chemical durability.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00102,2010CB923002 and 2012CB821403)the National Natural Science Foundation of China and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Using self-flux method,we have successfully grown the parent phase of the single crystals of CaFeAsF1-x.The X-ray di?raction indicates good crystallinity.In-plane resistivity shows a bad metallic behavior with a sharp drop of resistivity at about T SDW=119K.This anomaly is associated with the possible spin density wave(SDW)order.Interestingly near T SDW,the resistivity exhibits a cusp-like feature,which may be understood as the strong coupling effect between the electrons and the antiferromagnetic(AF)spin fluctuations.A reduction of fluorine or application of a high pressure will suppress the SDW feature and induce superconductivity.Hall effect measurements reveal a positive Hall coefficient below T SDW indicating a dominant role of the hole-like charge carriers in the parent phase.Strong magnetoresistance has been observed below T SDW suggesting multiple conduction channels of the charge carriers.