A two-step ultrasonic-assisted brazing method and its associated apparatus were developed to make 6063 aluminum alloys joints with Al-Si-Mg filler metal. The burst phenomenon and the effect of ultrasonic direction and...A two-step ultrasonic-assisted brazing method and its associated apparatus were developed to make 6063 aluminum alloys joints with Al-Si-Mg filler metal. The burst phenomenon and the effect of ultrasonic direction and time, as well as the welding joint geometry on the burst phenomenon were investigated. The results show that the burst phenomenon occurs in the liquid filler metal under the effects of high current density, heat, and interaction force. The burst phenomenon is eliminated when the oxide film on the edge of the cross-section of the two parent metals is removed with more than or equal to 6 s ultrasonic time. A model of formation and elimination for burst was proposed, through which the blasting phenomenon can be controlled by changing the ultrasonic time and the geometrical shape of the welded joint.展开更多
In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in th...In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.展开更多
An experiment model, scaled 1: 1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and stick...An experiment model, scaled 1: 1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and sticking the explosive cartridge on the outwall surface of the pipe, the experimental result makes clear that the controlled blasting method can get rid of the soot effectively. Under the action of the blasting compression wave and reflectance tension wave,the soot is destroyed effectively in the region of - 60° ~60° around the bIasting site, that creates a condition for the second blasting in the surplus soot.展开更多
文摘A two-step ultrasonic-assisted brazing method and its associated apparatus were developed to make 6063 aluminum alloys joints with Al-Si-Mg filler metal. The burst phenomenon and the effect of ultrasonic direction and time, as well as the welding joint geometry on the burst phenomenon were investigated. The results show that the burst phenomenon occurs in the liquid filler metal under the effects of high current density, heat, and interaction force. The burst phenomenon is eliminated when the oxide film on the edge of the cross-section of the two parent metals is removed with more than or equal to 6 s ultrasonic time. A model of formation and elimination for burst was proposed, through which the blasting phenomenon can be controlled by changing the ultrasonic time and the geometrical shape of the welded joint.
文摘In this paper,transient electromagnetic method was used to carry out the feasibility study on the detection and recognition of chamber blasting misfire.Firstly,an electromagnetic background field was established in the test;secondly,a benign conductor was preset in the chamber,and then the background field was eliminated after the electromagnetic field was measured;thirdly,the transient electromagnetic field was measured again after blasting;at last,the chamber blasting misfire was detected and recognized by comparing the change of eddy current field of the preset benign conductor before and after blasting.The test results showed that:When the buried depth of aluminum box target was no more than 30 m,transient electromagnetic method can clearly identify the position of the aluminum box;when the buried depth of aluminum box was more than30 m,the buried depth and position of the aluminum box was not sure due to the unknown level of secondary eddy current field generated by aluminum box.
文摘An experiment model, scaled 1: 1, designed for studying a blasting method to clear away soot in a soot-delivery pipe in coal-burning power plant is described. By mixing RDX and Nitramon on a particular scale and sticking the explosive cartridge on the outwall surface of the pipe, the experimental result makes clear that the controlled blasting method can get rid of the soot effectively. Under the action of the blasting compression wave and reflectance tension wave,the soot is destroyed effectively in the region of - 60° ~60° around the bIasting site, that creates a condition for the second blasting in the surplus soot.