The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sinte...The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).展开更多
The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray d...The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.展开更多
xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte ...xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.展开更多
NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance...NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes.展开更多
A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rate...A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.展开更多
β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-S...β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-SiC ceramic powders were investigated by measuring their complex permittivity by rectangle wave guide method in the frequency range of 8.2-18 GHz. The results show that both real part ε′ and imaginary part ε″ of complex permittivity increase with increasing pyrolysis temperature. The mechanism was proposed that order carbon formed at high temperature resulted in electron relaxation polarization and conductance loss, which contributes to the increase in complex permittivity.展开更多
The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental result...The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.展开更多
CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the produc...CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the product were studied via their crystal structure,microstructure,and piezoelectric performance.It is found that an appropriate Sb-Mn co-doping amount can effectively optimize the crystal structure and decrease the oxygen vacancy concentration in CBT ceramics,leading to enhanced electrical properties.Optimized electrical performance with a high Curie temperature(TC)of 792℃and a remarkable piezoelectric coefficient(d33)of 25 p C/N were achieved at a doping amount(x)of 0.05.Furthermore,this ceramic is found to exhibit an excellent thermal stability,with d33 retaining 88%of its original value after annealing at 600℃for 2 h.Moreover,this ceramic shows a high electrical resistivity(ρ)of 1.35×10^(8)Ω·cm with a small dielectric loss(tanδ)of 1.7%at 400℃.Because of such outstanding piezoelectric performance,it is believed that these Sb-Mn co-doped CBT ceramics could be potential candidates for high-temperature piezoelectric applications.展开更多
Nd2O3 doped BaTiO3ceramics(the additive content was respectively 0.001, 0.002, 0.003, 0.005, 0.01 molar ratio)were prepared by Sol-Gel method to study their dielectric characteristics and electric conductivities thr...Nd2O3 doped BaTiO3ceramics(the additive content was respectively 0.001, 0.002, 0.003, 0.005, 0.01 molar ratio)were prepared by Sol-Gel method to study their dielectric characteristics and electric conductivities through X-ray photoelectron spectrum (XPS). The results showed that the dielectric characteristics of Nd2O3 doped BaTiO3 ceramics were improved by doping. When Nd2O3 content was 0.003 mol, the results were even better, the dielectric constant was increased, the dielectric loss was decreased, the Curie-temperature (Tc) was 110 ℃, and the frequency characteristic was also good. The resistivity of Nd2O3 doped BaTiO3 ceramics was lower than that of pure BaTiO3 ceramics, when Nd2O3 content was 0.001 mol,the resistivity was (2.364×)108 Ω·m, the smallest. The grain resistance of Nd2O3 doped BaTiO3 ceramics exhibited NTC effect, but the grain boundary resistance showed PTC effect, and the grain boundary resistance was larger than that of the grain resistance, so the PTC effect originated from the grain boundary. The analysis of the element binding energy through X-ray photoelectron spectrum were indicated that the quantivalence of Ba2+and Ti4+in Nd2O3 doped BaTiO3 ceramics was variable, and resulted in the improvement of the conductibility of BaTiO3 ceramics.展开更多
The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this dopi...The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3.展开更多
We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of...We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.展开更多
5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under elec...5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.展开更多
The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-...The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.展开更多
Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-...Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.展开更多
The effect of small changes in sintering temperature on microstructure, electrical properties, dielectric characteristics, and degradation behavior of V-Mn-Nb-Gd co-doped zinc oxide ceramics was investigated. With the...The effect of small changes in sintering temperature on microstructure, electrical properties, dielectric characteristics, and degradation behavior of V-Mn-Nb-Gd co-doped zinc oxide ceramics was investigated. With the increase of sintering temperature, the densities of the sintered pellets decreased from 5.54 to 5.42 g/cm3 and the average grain size increased from 4.1 to 11.7 μm. The breakdown field(E1 m A) decreased noticeably from 7138 to 920 V/cm with the increase of sintering temperature. The varistor ceramics sintered at 900 ℃ exhibited excellent nonohmic properties, which were 66 for the nonohmic coefficient and 77 μA/cm2 for the leakage current density. Concerning stability, the varistors sintered at 900 ℃ exhibited the strongest accelerated degradation characteristics, with ΔE1 mA =-9.2% for DC accelerated degradation stress of 0.85 E1 m A at 85 °C for 24 h.展开更多
The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by ...The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)展开更多
CaO-B203-SiO2 (CBS) glass powders are prepared by conventional glass melting method at different melting temperatures whose properties and microstructures are characterized by X-ray diffraction (XRD) and scanning ...CaO-B203-SiO2 (CBS) glass powders are prepared by conventional glass melting method at different melting temperatures whose properties and microstructures are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that there are SiO2 and some unknown phases in CBS glass melting liquid from 1 300 ℃ to 1 500 ℃ and the amount of these phases decreases with the increase of the melting temperature. The CBS glass melted at 1 450 ℃ could be sintered from 830 ℃ to 930 ℃ and the bulk densities of the samples are all higher than 2.4 g/cm^3. From the points of the properties and energy conservation, the melting temperature of 1 450 ℃ is the optimal melting temperature. The glass ceramic sintered at 850 ℃ exhibits better dielectric properties: er=6.33, tan6=2.2×10^-3 at 10 GHz, and the major phases of the samples are CaSiO3, CaB2O4 and SiO2.展开更多
The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and mi...The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.展开更多
The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the...The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.展开更多
基金Project(CX201108)supported by the Doctorate Foundation of Northwestern Polytechnical University,ChinaProject(51072165)supported by the National Natural Science Foundation of ChinaProjects(KP200901,SKLSP201104)supported by the Fund of State Key Laboratory of Solidification Processing in NWPU,China
文摘The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).
基金Project (11KJB430007) supported by the University Natural Science Research Program of Jiangsu Province, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘The dielectric properties and phase transition characteristics of La2O3- and Sb2O3-doped barium strontium titanate ceramics prepared by solid state route were investigated. The microstructure was identified by X-ray diffraction method and scanning electron microscope was also employed to observe the surface morphologies. It is found that (La,Sb)-codoped barium strontium titanate ceramics exhibit typical perovskite structure and the average grain size decreases dramatically with increasing the content of Sb2O3. Both La3+ ions and Sb3+ ions occupy the A-sites in perovskite lattice. The dielectric constant and dielectric loss of barium strontium titanate based ceramics are obviously influenced by La2O3 as well as Sb2O3 addition content. The tetragonal-cubic phase transition of La2O3 modified barium strontium titanate ceramics is of second order and the Curie temperature shifts to lower value with increasing the La2O3 doping content. The phase transition of (La,Sb)-codoped barium strontium titanate ceramics diffuses and the deviation from Curie-Weiss law becomes more obvious with the increase in Sb2O3 concentration. The temperature corresponding to the dielectric constant maximum of (La,Sb)-codoped barium strontium titanate ceramics decreases with increasing the Sb2O3 content, which is attributed to the replacement of host ions by the Sb3+ ions.
基金Project(2005CB623703)supported by the National Basic Research Program of ChinaProject(50721003)supported by the National Natural Science Foundation for Innovation Group of China+1 种基金Project(2008AA030501)supported by the National High-tech Research and Development Program of ChinaProject(201012200021)supported by the Basic Scientific Research Program of Central South University,China
文摘xCu/(10NiO-NiFe2O4) cermet and 1BaO-xCu/(10NiO-NiFe2O4) cermet(x=5,10,17) inert anodes were prepared as potential inert anodes for aluminum electrolysis and their corrosion resistance to traditional electrolyte was studied with anodic current density of 1.0 A/cm2 in laboratory electrolysis.The substantial corrosion of metal Cu was observed,many pores appeared on the surface of anode and electrolytes infiltrated inside anodes during the electrolysis.The wear rates of 5Cu/(10NiO-NiFe2O4),10Cu/(10NiO-NiFe2O4),17Cu/(10NiO-NiFe2O4),1BaO-5Cu/(10NiO-NiFe2O4),1BaO-10Cu/(10NiO-NiFe2O4) and 1BaO-17Cu/(10NiO-NiFe2O4) are 2.15,6.50,8.30,4.88,4.70 and 4.48 cm/a,respectively.The addition of BaO to 10Cu/(10NiO-NiFe2O4) cermet and 17Cu/(10NiO-NiFe2O4) cermet is advantageous because BaO can effectively promote densification and thus improve corrosion resistance.But the addition of BaO to 5Cu/(10NiO-NiFe2O4) cermet is unfavorable to corrosion resistance because additive BaO at the grain boundary of anode accelerates possibly the corrosion of cermet.
基金Project (2012FJ6123) supported by the Project of Science and Technology of Hunan Province,ChinaProject supported by Post-Doctoral Foundation of Central South University,China+1 种基金Project (CL12100) supported the Undergraduate Innovative Training of Central South University,ChinaProject (2282013bkso13) supported by Free Exploration Plan of Central South University,China
文摘NiFe2O4-10NiO-based cermet inert anodes for aluminium electrolysis were prepared and their properties were investigated in a lab-scale electrolysis cell. The results show that the inert anodes exhibit good performance during electrolysis in molten salt cryolite at 960 °C, but according to the analyses of phase compositions and microstructures through XRD, SEM/EDX and metallographic analysis, the metal in the anodes is preferentially corroded and many pores are produced on the anode surface after electrolysis. The preferential dissolution of Fe in the NiFe2O4 phase may lead to the non-uniform corrosion of NiFe2O4 grains. Moreover, a dense protective layer of NiFe2O4-NiAl2O4-FeAl2O4 is formed on the anode surface, which originates from the reaction of Al2O3 dissolved in the electrolyte with NiO or FeO, the annexation of NiFe2O4-NiAl2O4-FeAl2O4 to NiO and volume expansion. Thus, the dense NiFe2O4-NiAl2O4-FeAl2O4 layer inhibits the metal loss and ceramic-phase corrosion on the surface of the cermet inert anodes.
基金Project(51474238)supported by the National Natural Science Foundation of China
文摘A comparative study on the corrosion resistance of 17Ni/(NiFe2O4-10NiO) cermet inert anode prepared in differentsintering atmospheres was conducted in Na3AlF6-Al2O3 melt. The results indicate that the corrosion rates of NiFe2O4-based cermetanodes prepared in the vacuum and the atmosphere with oxygen content of 2×10^-3 (volume fraction) are 6.46 and 2.71 cm/a,respectively. Though there is a transition layer with lots of holes or pores, a densified layer is formed on the surface of anode due tosome reactions producing aluminates. For the anode prepared in the atmosphere with oxygen content of 2×10^-3, the thickness of thedensification layer (about 50 μm) is thicker than that (about 30 μm) formed on the surface of anode prepared in the vacuum. Thecontents of NiO and Fe(II) in NiFe2xO4-y-z increase with the decrease of oxygen content in sintering atmosphere, which reduces thecorrosion resistance of the material.
基金Project (50572090) supported by the National Natural Science Foundation of ChinaProject (KP200901) supported by the Fund of the State Key Laboratory of Solidification Processing, China
文摘β-SiC ceramic powders were obtained by pyrolyzing polycarbosilane in vacuum at 800-1200 °C. The β-SiC ceramic powders were characterized by TGA/DSC, XRD and Raman spectroscopy. The dielectric properties of β-SiC ceramic powders were investigated by measuring their complex permittivity by rectangle wave guide method in the frequency range of 8.2-18 GHz. The results show that both real part ε′ and imaginary part ε″ of complex permittivity increase with increasing pyrolysis temperature. The mechanism was proposed that order carbon formed at high temperature resulted in electron relaxation polarization and conductance loss, which contributes to the increase in complex permittivity.
基金Project(2010GXNSFA013029)supported by National Undergraduates Innovating Experimentation Project of ChinaProject(101059529)supported by Natural Science Foundation of Guangxi,China
文摘The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.
基金financial support from the Key Research and Development Project of Zhejiang Province,China(No.2017C01056)。
文摘CaBi_(4)Ti_(4)O_(15)(CBT)-based Aurivillius high-temperature piezoceramics with different Sb-Mn co-doping amounts were synthesized via the conventional sintering technique.The influences of doping amount on the product were studied via their crystal structure,microstructure,and piezoelectric performance.It is found that an appropriate Sb-Mn co-doping amount can effectively optimize the crystal structure and decrease the oxygen vacancy concentration in CBT ceramics,leading to enhanced electrical properties.Optimized electrical performance with a high Curie temperature(TC)of 792℃and a remarkable piezoelectric coefficient(d33)of 25 p C/N were achieved at a doping amount(x)of 0.05.Furthermore,this ceramic is found to exhibit an excellent thermal stability,with d33 retaining 88%of its original value after annealing at 600℃for 2 h.Moreover,this ceramic shows a high electrical resistivity(ρ)of 1.35×10^(8)Ω·cm with a small dielectric loss(tanδ)of 1.7%at 400℃.Because of such outstanding piezoelectric performance,it is believed that these Sb-Mn co-doped CBT ceramics could be potential candidates for high-temperature piezoelectric applications.
文摘Nd2O3 doped BaTiO3ceramics(the additive content was respectively 0.001, 0.002, 0.003, 0.005, 0.01 molar ratio)were prepared by Sol-Gel method to study their dielectric characteristics and electric conductivities through X-ray photoelectron spectrum (XPS). The results showed that the dielectric characteristics of Nd2O3 doped BaTiO3 ceramics were improved by doping. When Nd2O3 content was 0.003 mol, the results were even better, the dielectric constant was increased, the dielectric loss was decreased, the Curie-temperature (Tc) was 110 ℃, and the frequency characteristic was also good. The resistivity of Nd2O3 doped BaTiO3 ceramics was lower than that of pure BaTiO3 ceramics, when Nd2O3 content was 0.001 mol,the resistivity was (2.364×)108 Ω·m, the smallest. The grain resistance of Nd2O3 doped BaTiO3 ceramics exhibited NTC effect, but the grain boundary resistance showed PTC effect, and the grain boundary resistance was larger than that of the grain resistance, so the PTC effect originated from the grain boundary. The analysis of the element binding energy through X-ray photoelectron spectrum were indicated that the quantivalence of Ba2+and Ti4+in Nd2O3 doped BaTiO3 ceramics was variable, and resulted in the improvement of the conductibility of BaTiO3 ceramics.
基金Project(BK2011243) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(EIPE11204) supported by the State Key Laboratory of Electrical Insulation and Power Equipment, China+4 种基金Project(KF201104) supported by the State Key Laboratory of New Ceramic and Fine Processing, ChinaProject(KFJJ201105) supported by the Opening Program of State key Laboratory of Electronic Thin Films and Integrated Devices, ChinaProject(2011-22) supported by the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University, ChinaProject(10KJD430002) supported by the Universities Natural Science Research Project of Jiangsu Province, ChinaProject(11JDG084) supported by the Research Foundation of Jiangsu University, China
文摘The effect of different molar ratios of Y2O3 and Y(NO3)3 on the microstructure and electrical response of ZnO-Bi203-based varistor ceramics sintered at 1 000 ℃ was investigated, and the mechanism by which this doping improves the electrical characteristics of ZnO-Bi203-based varistor ceramics was discussed. With increasing amounts of Y(NO3)3 or Y2O3 in the starting composition, Y2O3, Sb204 and Y-containing Bi-rich phase form, and the average grain size significantly decreases. The average grain size significantly decreases as the contents of rare earth compounds of Y(NO3)3 or Y2O3 increase. The maximum value of the nonlinear coefficient is found at 0.16% Y(NO3)3 or 0.02% YaO3 (molar fraction) doped varistor ceramics, and there is an increase of 122% or 35% compared with the varistor ceramics without Y(NO3)3 or Y2O3. The threshold voltage VT of Y(NO3)3 and Y2O3 reaches at 1 460 V/mm and 1 035 V/ram, respectively. The results also show that varistor sample doped with Y(NO3)3 has a remarkably more homogeneous and denser microstructure in comparison to the sample doped with Y2O3.
基金Funded by the Natural Science Foundation of China (No. 50872001 and No. 50642038)the Scientific Research Foundation of Education Ministry of Anhui Province (No. 2005KJ224 and No. KJ2007B132)the Graduate Student Innovation Programs of Anhui University (No. 20072006)
文摘We investigated the influence of soaking time on the semi-conductivity and nonlinear electrical properties of TiO2- based varistor ceramic samples. We used a single sintering process and fabricated six disk samples of (Sr, Bi, Si, Ta)-doped TiO2- based varistor ceramics sintered at 1 250℃ for 0.5 h, 1.0 h, 2.0 h, 3.0 h, 4.0 h, and 5.0 h, respectively. The samples were characterized by X-ray diffraction, breakdown voltage, and complex impedance. The results show that as the soaking time increases from 0.5 h to 5.0 h, the breakdown voltage drops before rising while the nonlinear coefficient increases and then decreases. We suggest that, considering both grain semi-conductivity and nonlinear electrical properties of the TiO2-based varistor ceramics, the optimal soaking time is between 2.0 h and 3.0 h.
基金Project (2005CB623703) supported by the Major State Basic Research and Development Program of China
文摘5Cu/(10NiO-NiFe2O4) cermet inert anodes were prepared by cold-pressing and sintering process, and the effect of superheat degree of melting K3AlF6-Na3AlF6-AlF3 on their anticorrosion performance was studied under electrolysis conditions. The results show that, the fluctuation of cell becomes small with increasing of superheat degree, which is helpful to inhibit the formation of cathodic encrustation; the concentration of impurities from inert anode in bath goes up to certain degree, but it is far smaller than those in traditional high-temperature bath. Increasing the superheat degree of melting K3AlF6-Na3AlF6-AlF3 has unconspicuous effect on the contents of impurities in cathodic aluminum. The total mass fractions of Fe, Ni and Cu in aluminum are 15.38% and 15.09% respectively under superheat degree of 95 and 195 ℃. From micro-topography of anode used view, increasing the superheat degree can aggravate corrosion of metal Cu in inert anode, and has negative influence on electrical conductivity of electrode to some extent.
基金Project(50872001) supported by the National Natural Science Foundation of ChinaProjects(KJ2007B132, KJ2009A006Z) supported by the Scientific Research Foundation of Education Department of Anhui Province, ChinaProject(XJ200907) supported by the Foundation of Construction of Quality Project of Anhui University, China
文摘The influence of soaking time on the nonlinear electrical behavior and dielectric properties of TiO2-based varistor ceramics was investigated. Based on single sintering process, six disk samples of (Sr, Bi, Si, Ta)-doped TiO2-based varistor ceramics were fabricated by sintering at 1 250 ℃ for 0.5-5.0 h. The samples were characterized by X-ray diffraction, voltage-current characteristics, energy spectra, metallographs, breakdown voltages, and apparent dielectric constant. It is found that the breakdown electrical field intensity at a current density of 10 mA/cma decreases from 5.5 to 4.1 V/mm first and then increases to 7.0 V/mm, the nonlinear coefficient increases from 2.39 to 2.62 first and then decreases to 2.42, and the apparent dielectric constant increases from 98 200 to 1l5 049 first and then decreases to 73 865 with the soaking time increasing from 0.5 to 5.0 h. These indicate that the optimal soaking time is 2.0-3.0 h considering both nonlinear electrical behavior and dielectric properties.
基金Project(21406273)supported by the National Natural Science Foundation of China
文摘Magneli phase titanium sub-oxide conductive ceramic Tin O2n-1 was used as the support for Pt due to its excellent resistance to electrochemical oxidation, and Pt/Tin O2n-1 composites were prepared by the impregnation-reduction method. The electrochemical stability of Tin O2n-1 was investigated and the results show almost no change in the redox region after oxidation for 20 h at 1.2 V(vs NHE) in 0.5 mol/L H2SO4 aqueous solution. The catalytic activity and stability of the Pt/Tin O2n-1 toward the oxygen reduction reaction(ORR) in 0.5 mol/L H2SO4 solution were investigated through the accelerated aging tests(AAT), and the morphology of the catalysts before and after the AAT was observed by transmission electron microscopy. At the potential of 0.55 V(vs SCE), the specific kinetic current density of the ORR on the Pt/Tin O2n-1 is about 1.5 times that of the Pt/C. The LSV curves for the Pt/C shift negatively obviously with the half-wave potential shifting about 0.02 V after 8000 cycles AAT, while no obvious change takes place for the LSV curves for the Pt/Tin O2n-1. The Pt particles supported on the carbon aggregate obviously, while the morphology of the Pt supported on Tin O2n-1 remains almost unchanged, which contributes to the electrochemical surface area loss of Pt/C being about 2times that of the Pt/Tin O2n-1. The superior catalytic stability of Pt/Tin O2n-1 toward the ORR could be attributed to the excellent stability of the Tin O2n-1 and the electronic interaction between the metals and the support.
文摘The effect of small changes in sintering temperature on microstructure, electrical properties, dielectric characteristics, and degradation behavior of V-Mn-Nb-Gd co-doped zinc oxide ceramics was investigated. With the increase of sintering temperature, the densities of the sintered pellets decreased from 5.54 to 5.42 g/cm3 and the average grain size increased from 4.1 to 11.7 μm. The breakdown field(E1 m A) decreased noticeably from 7138 to 920 V/cm with the increase of sintering temperature. The varistor ceramics sintered at 900 ℃ exhibited excellent nonohmic properties, which were 66 for the nonohmic coefficient and 77 μA/cm2 for the leakage current density. Concerning stability, the varistors sintered at 900 ℃ exhibited the strongest accelerated degradation characteristics, with ΔE1 mA =-9.2% for DC accelerated degradation stress of 0.85 E1 m A at 85 °C for 24 h.
基金Projects(CC20120031,CC20110048)supported by Changzhou Science and Technology Innovation Project,China
文摘The CaCu3Ti4O12 xerogels, powders and ceramics were prepared through the sol-gel method using two kinds of organic acid (decanoic acid and decanedioic acid). The xerogels, powders and ceramics were characterized by the methods of TG-DTG, FT-IR, XRD, SEM and TEM. The dielectric properties of the ceramics were also measured. The results indicated that the powders calcined at 850 ℃ for 2 h are both nanometer scale particles. After sintering, the ceramics mainly consist of the CaCu3Ti4O12 phase. Compared with the powders prepared using monoacid, the particle size of the powders prepared using diacid obviously increases, and the grain size, the relative density and the whole permittivity of the ceramics increase as well. Specially, the ceramic prepared using decanedioic acid has higher relative density (97.3%), dielectric constant (316 808) and lower dielectric loss (0.242 5) at 30 ℃ (10 kIaz)
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program of ChinaProject(BE2010194) supported by Science&Technology Pillar Program of Jiangsu Province, China+1 种基金Project(KF201103) supported by the State Key Laboratory of New Ceramic and Fine Processing, Tsinghua University, ChinaProject supported by the Priority Academic Development of Jiangsu Higher Education Institutions, China
文摘CaO-B203-SiO2 (CBS) glass powders are prepared by conventional glass melting method at different melting temperatures whose properties and microstructures are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that there are SiO2 and some unknown phases in CBS glass melting liquid from 1 300 ℃ to 1 500 ℃ and the amount of these phases decreases with the increase of the melting temperature. The CBS glass melted at 1 450 ℃ could be sintered from 830 ℃ to 930 ℃ and the bulk densities of the samples are all higher than 2.4 g/cm^3. From the points of the properties and energy conservation, the melting temperature of 1 450 ℃ is the optimal melting temperature. The glass ceramic sintered at 850 ℃ exhibits better dielectric properties: er=6.33, tan6=2.2×10^-3 at 10 GHz, and the major phases of the samples are CaSiO3, CaB2O4 and SiO2.
基金Project(2010GXNSFA013029) supported by the Natural Science Foundation of Guangxi Province,ChinaProject(101059529) supported by National Undergraduate Innovation Program of the Ministry of Education of China
文摘The influences of BaCu(B2O5) (BCB) addition on sintering, microstructure and microwave dielectric properties of Li2MgTi308 ceramics were investigated using X-ray diffractometry, scanning electron microscopy and microwave dielectric measurements. The experimental results show that a small amount of BaCu(B2O5) addition can effectively reduce the sintering temperature to 900℃, and induce only a limited degradation of the microwave dielectric properties. Typically, the best microwave dielectric properties of er24.5, Q×f =24 622 GHz, rf=4.2×10-6℃ -1 are obtained for 1.0% BCB-doped Li2MgTi3O8 ceramics sintered at 900℃ for 3 h. The BCB-doped Li2MgTi3O8 ceramics can be compatible with Ag electrode, which may be a strong candidate for low temperature co-fired ceramics applications.
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030503) supported by Hi-Tech Research and Development Program of China
文摘The CaO-doped Cu/(NiFe2O4-10NiO) cermet inert anodes were prepared by the cold isostatie pressing-sintering process, and their corrosion resistance to Na3AlF6-K3AlF6-Al203 melt was studied. The results show that the relative density of 5Cu/(NiFe2O4-10NiO) cermet sintered at 1 200 ℃ increases from 82.83% to 97.63% when 2% CaO (mass fraction) is added. During the electrolysis, the relative density of cermet inert anode descends owing to the chemical dissolution of additive CaO at ceramic grain boundary, which accelerates the penetration of electrolyte. Thus, the corrosion resistance to melts of Cu/(NiFe2O4-10NiO) cermet inert anode is reduced. To improve the corrosion resistance of the cermet inert anode, the content of CaO doped should be decreased and the technology of cleaning the ceramic grain boundary should be applied.