This paper presents a new strategy of embedded energy management between battery and supercapacitors (SC) for hybrid electric vehicles (HEV) applications. This proposal is due to the present trend in the field, kn...This paper presents a new strategy of embedded energy management between battery and supercapacitors (SC) for hybrid electric vehicles (HEV) applications. This proposal is due to the present trend in the field, knowing that the major drawback of the HEV is the autonomy problem. Thus, using supercapacitors and battery with a good energy management improves the HEV performances. The main contribution of this paper is focused on DC-bus voltage and currents control strategies based on polynomial controller. These strategies are implemented in PICI8F4431 microcontroller for DC/DC converters control. Due to reasons of cost and available components (no optimized), such as the battery and power semiconductors (IGBT), the experimental tests are carried out in reduced scale (2.7 kW). Through some simulations and experimental results obtained in reduced scale, the authors present an improved energy management strategy for HEV.展开更多
Electrical power assisted steering (EPAS) is one of the key components, especially for electrical vehicle. It has attracted much attention for their advantages with respect to improved fuel economy and has been widely...Electrical power assisted steering (EPAS) is one of the key components, especially for electrical vehicle. It has attracted much attention for their advantages with respect to improved fuel economy and has been widely adopted as automotive power-steering equipment in recent years. EPS (electrical power steering) controllers contain MCU (microprocessor control unit) to implement the complex control algorithms. EPS control strategy development is the core technology of the whole system. To achieve the better performance of driving, both mechanical structures and electrical structures are totally designed as a whole. Model-based development is recommended to software design. There are several trends about EPS’ future, such as high power EPS development, high voltage EPS development and steering-by-wire technology.展开更多
文摘This paper presents a new strategy of embedded energy management between battery and supercapacitors (SC) for hybrid electric vehicles (HEV) applications. This proposal is due to the present trend in the field, knowing that the major drawback of the HEV is the autonomy problem. Thus, using supercapacitors and battery with a good energy management improves the HEV performances. The main contribution of this paper is focused on DC-bus voltage and currents control strategies based on polynomial controller. These strategies are implemented in PICI8F4431 microcontroller for DC/DC converters control. Due to reasons of cost and available components (no optimized), such as the battery and power semiconductors (IGBT), the experimental tests are carried out in reduced scale (2.7 kW). Through some simulations and experimental results obtained in reduced scale, the authors present an improved energy management strategy for HEV.
基金The Innovation and Technology Fund of Hong Kong Government ( No. ITP/042 /08AP &No. ITP/003 /10AP)
文摘Electrical power assisted steering (EPAS) is one of the key components, especially for electrical vehicle. It has attracted much attention for their advantages with respect to improved fuel economy and has been widely adopted as automotive power-steering equipment in recent years. EPS (electrical power steering) controllers contain MCU (microprocessor control unit) to implement the complex control algorithms. EPS control strategy development is the core technology of the whole system. To achieve the better performance of driving, both mechanical structures and electrical structures are totally designed as a whole. Model-based development is recommended to software design. There are several trends about EPS’ future, such as high power EPS development, high voltage EPS development and steering-by-wire technology.