Using a microscopic four-body cluster model,we investigate the spectral properties and structural configurations of the ^(10)Be nucleus.We calculate physical quantities such as the root-mean-squared(r.m.s.)radii and e...Using a microscopic four-body cluster model,we investigate the spectral properties and structural configurations of the ^(10)Be nucleus.We calculate physical quantities such as the root-mean-squared(r.m.s.)radii and electromagnetic transition strengths.The theoretical results for the energies and certain electromagnetic transition strengths of the low-lying states show good agreement with experimental data.In particular,the enhancement of the r.m.s.radius and isoscalar monopole transition strength of the O_(3)^(+) state indicates a well-developed cluster structure.We obtained three 1-states in E_(x)<15 MeV that show remarkable dipole transition strengths,suggesting that the 1-states may have cluster structure.Using the obtained wave functions,we calculate the reduced-width amplitudes(RWAs)to investigate the SHe+α and'Be+n two-body cluster structures in ^(10)Be.The results suggest that the lowlying states show the two-body ^(6)He+α and ^(9)Be+n configuration,with the ^(6)He+α components of the two-body structure diminishing as the energy increases,which due to the breakup of He and ^(9)Be at higher excitation energies.Moreover,a few states above the α+α+n+n threshold still exhibit significant 9Be+n components.展开更多
The interacting boson model-3(IBM-3) has been used to study the energy levels and electromagnetic transitions for the nucleus 34 S.The main components of the wave function,isoscalar and isovector parts in the M1 and E...The interacting boson model-3(IBM-3) has been used to study the energy levels and electromagnetic transitions for the nucleus 34 S.The main components of the wave function,isoscalar and isovector parts in the M1 and E2 transitions for low-lying states have been investigated.According to this study,the theoretical calculations are in agreement with experimental data,and the nucleus 34 S is in transition from U(5) to S U(3).展开更多
Interacting Boson Model-2(IBM-2)is used to determine the Hamiltonian for Er nuclei.Fit values of parameters are used to construct the Hamiltonian,energy levels and electromagnetic transitions(B(E2),B(M1))multipole mix...Interacting Boson Model-2(IBM-2)is used to determine the Hamiltonian for Er nuclei.Fit values of parameters are used to construct the Hamiltonian,energy levels and electromagnetic transitions(B(E2),B(M1))multipole mixing ratios(δ(E2/M1))for some even-even Er nuclei and monopole transition probability are estimated.New ideas are used for counting bosons number at N=64 and results are compared with previous works.展开更多
文摘Using a microscopic four-body cluster model,we investigate the spectral properties and structural configurations of the ^(10)Be nucleus.We calculate physical quantities such as the root-mean-squared(r.m.s.)radii and electromagnetic transition strengths.The theoretical results for the energies and certain electromagnetic transition strengths of the low-lying states show good agreement with experimental data.In particular,the enhancement of the r.m.s.radius and isoscalar monopole transition strength of the O_(3)^(+) state indicates a well-developed cluster structure.We obtained three 1-states in E_(x)<15 MeV that show remarkable dipole transition strengths,suggesting that the 1-states may have cluster structure.Using the obtained wave functions,we calculate the reduced-width amplitudes(RWAs)to investigate the SHe+α and'Be+n two-body cluster structures in ^(10)Be.The results suggest that the lowlying states show the two-body ^(6)He+α and ^(9)Be+n configuration,with the ^(6)He+α components of the two-body structure diminishing as the energy increases,which due to the breakup of He and ^(9)Be at higher excitation energies.Moreover,a few states above the α+α+n+n threshold still exhibit significant 9Be+n components.
基金supported by the National Natural Science Foundation of China (Grant No. 11165001)
文摘The interacting boson model-3(IBM-3) has been used to study the energy levels and electromagnetic transitions for the nucleus 34 S.The main components of the wave function,isoscalar and isovector parts in the M1 and E2 transitions for low-lying states have been investigated.According to this study,the theoretical calculations are in agreement with experimental data,and the nucleus 34 S is in transition from U(5) to S U(3).
文摘Interacting Boson Model-2(IBM-2)is used to determine the Hamiltonian for Er nuclei.Fit values of parameters are used to construct the Hamiltonian,energy levels and electromagnetic transitions(B(E2),B(M1))multipole mixing ratios(δ(E2/M1))for some even-even Er nuclei and monopole transition probability are estimated.New ideas are used for counting bosons number at N=64 and results are compared with previous works.