Herein a novel Dyadic Green’s Function (DGF) is presented to calculate the field in ElectroMag-netic Compatibility (EMC) chamber. Due to the difficulty of simulating the whole chamber environment, the analysis combin...Herein a novel Dyadic Green’s Function (DGF) is presented to calculate the field in ElectroMag-netic Compatibility (EMC) chamber. Due to the difficulty of simulating the whole chamber environment, the analysis combines the DGF formulation and the FEM method, with the latter deals with the reflection from absorbers. With DGF formulation for infinite periodic array structures, this paper investigates electromagnetic field in chamber with truncated arrays. The reflection from the absorber serves as the virtual source contribut-ing to the total field. Hence the whole chamber field calculation can be separated from the work of absorber model set-up. Practically the field homogeneity test and Normal Site Attenuation (NSA) test are carried out to evaluate the chamber performance. Based on the method in this paper, the simulation results agree well with the test, and predict successfully the victim frequency points of the chamber.展开更多
基金Supported by the National Natural Science Foundation of China (No.50377001) and Tenth Five Year Key Items Foundation (No.2003SZ007) of Beijing Jiaotong Uni-versity.
文摘Herein a novel Dyadic Green’s Function (DGF) is presented to calculate the field in ElectroMag-netic Compatibility (EMC) chamber. Due to the difficulty of simulating the whole chamber environment, the analysis combines the DGF formulation and the FEM method, with the latter deals with the reflection from absorbers. With DGF formulation for infinite periodic array structures, this paper investigates electromagnetic field in chamber with truncated arrays. The reflection from the absorber serves as the virtual source contribut-ing to the total field. Hence the whole chamber field calculation can be separated from the work of absorber model set-up. Practically the field homogeneity test and Normal Site Attenuation (NSA) test are carried out to evaluate the chamber performance. Based on the method in this paper, the simulation results agree well with the test, and predict successfully the victim frequency points of the chamber.