Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although tr...Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.展开更多
Time–frequency electromagnetic data contain frequency and transient electromagnetic information and can be used to determine the apparent resistivity both in the frequency and time domains.The observation data contai...Time–frequency electromagnetic data contain frequency and transient electromagnetic information and can be used to determine the apparent resistivity both in the frequency and time domains.The observation data contains three types of noise:the harmonics interference at 50 Hz,high-frequency random noise,and low-frequency noise.We use frequency-domain bandstop filtering to remove the harmonics interference noise,segmentation and extension median filtering,and fitting of fixed extremes in empirical mode decomposition to remove the high-frequency and low-frequency noise,respectively;furthermore,we base the selection of median filtering window size on the variance and skewness coefficient of the data.We first remove the harmonics interference at 50 Hz,then the high-frequency noise,and finally the low-frequency noise.We test the proposed methodology by using theory and experiments,and we find that the three types of noises are removed,the phase and amplitude information of the signal are maintained,and high-quality waveforms are obtained in the time domain.展开更多
Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising met...Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.展开更多
Cryo-electron microscopy (cryo-EM) plays an important role in determining the structure of proteins, viruses, and even the whole cell. It can capture dynamic structural changes of large protein complexes, which other ...Cryo-electron microscopy (cryo-EM) plays an important role in determining the structure of proteins, viruses, and even the whole cell. It can capture dynamic structural changes of large protein complexes, which other methods such as X-ray crystallography and nuclear magnetic resonance analysis find difficult. The signal-to-noise ratio of cryo-EM images is low and the contrast is very weak, and therefore, the images are very noisy and require filtering. In this paper, a filtering method based on non-local means and Zernike moments is proposed. The method takes into account the rotational symmetry of some biological molecules to enhance the signal-to-noise ratio of cryo-EM images. The method may be useful in cryo-EM image processing such as the automatic selection of particles, orientation determination, and the building of initial models.展开更多
基金Project(2014AA06A602)supported by the National High-Tech Research and Development Program of ChinaProjects(41404111,41304098)supported by the National Natural Science Foundation of ChinaProject(2015JJ3088)supported by the Natural Science Foundation of Hunan Province,China
文摘Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.
基金supported by the National Natural Science Foundation of China(No.41574127 and No.41227803)
文摘Time–frequency electromagnetic data contain frequency and transient electromagnetic information and can be used to determine the apparent resistivity both in the frequency and time domains.The observation data contains three types of noise:the harmonics interference at 50 Hz,high-frequency random noise,and low-frequency noise.We use frequency-domain bandstop filtering to remove the harmonics interference noise,segmentation and extension median filtering,and fitting of fixed extremes in empirical mode decomposition to remove the high-frequency and low-frequency noise,respectively;furthermore,we base the selection of median filtering window size on the variance and skewness coefficient of the data.We first remove the harmonics interference at 50 Hz,then the high-frequency noise,and finally the low-frequency noise.We test the proposed methodology by using theory and experiments,and we find that the three types of noises are removed,the phase and amplitude information of the signal are maintained,and high-quality waveforms are obtained in the time domain.
基金financially supported the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA14020102)the National Natural Science Foundation of China (Nos. 41774125,41530320 and 41804098)the Key National Research Project of China (Nos. 2016YFC0303100,2017YFC0601900)。
文摘Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.
基金supported by the National Basic Research Program of China (2010CB912400)
文摘Cryo-electron microscopy (cryo-EM) plays an important role in determining the structure of proteins, viruses, and even the whole cell. It can capture dynamic structural changes of large protein complexes, which other methods such as X-ray crystallography and nuclear magnetic resonance analysis find difficult. The signal-to-noise ratio of cryo-EM images is low and the contrast is very weak, and therefore, the images are very noisy and require filtering. In this paper, a filtering method based on non-local means and Zernike moments is proposed. The method takes into account the rotational symmetry of some biological molecules to enhance the signal-to-noise ratio of cryo-EM images. The method may be useful in cryo-EM image processing such as the automatic selection of particles, orientation determination, and the building of initial models.