构建了永磁偏置型故障限流器PMFCL的经济性分析模型,包括材料成本和运行成本两部分。材料成本取决于PMFCL的关键结构参数,基于等效磁路法导出了PMFCL 4个关键结构参数与电感和、电感比以及饱和深度比这3个独立电磁变量间的函数关系;运...构建了永磁偏置型故障限流器PMFCL的经济性分析模型,包括材料成本和运行成本两部分。材料成本取决于PMFCL的关键结构参数,基于等效磁路法导出了PMFCL 4个关键结构参数与电感和、电感比以及饱和深度比这3个独立电磁变量间的函数关系;运行成本由铁芯损耗和绕组铜耗组成,并给出了各自的计算方法。针对500 k V PMFCL经济性分析实例,分析了电磁变量对PMFCL经济性的影响,并建立其经济性优化模型,求得了PMFCL的最优成本和对应的结构参数。结果表明,在高压大容量应用场合,PMFCL具有较好的经济性优势。Ansoft Maxwell二维有限元仿真验证了经济性优化模型的合理性。展开更多
We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method...We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill- hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formali...We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.展开更多
Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is...Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is generally used to collect data. In view of the problems of incomplete information of the abnormal body and the data loss in the existing TEM single-component coil sensor,a three-component TEM coil sensor is designed. By analyzing the relationship between sensor sensitivity and coil structure parameters,the coil structure and turns are designed. By analyzing the frequency response characteristics of the TEM magnetic field sensor,the signal distortion is reduced by using the under-damped matching mode. By analyzing the distribution of various noise sources of the magnetic sensor,the appropriate amplifier is selected to reduce the background noise. Finally,a three-component TEM induction magnetic field sensor is designed. The weight of the sensor is controlled at 3.2 kg and the working frequency is 10 mHz-10 kHz. The background noises of X and Y components probably keep in 1.5×10^-8 V/ Hz and sensitivities are 8.4 and 9.8 nT/s,respectively,the background noise of vertical component is 2.1× 10^-7 V/ Hz and sensitivity is 18.5 nT/s. Compared with the existing single-component TEM receiving magnetic field sensor,the designed sensor realizes the signal acquisition of three components. Without too much increase in volume and total weight,it improves the sensitivity of the sensor and reduces the background noise,thus the signal-to-noise ratio (SNR) of the signal is improved.展开更多
In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteri...In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.展开更多
We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part i...We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak.展开更多
We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and t...We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and the momentum eigenstate are revealed.展开更多
In a two-dimensional quantum dot (QD) with parabolic confinement potential, we investigate pure dephasing due to deformation potential exciton-bulk longitudinal acoustic phonons (LAP) interaction for exciton qubit...In a two-dimensional quantum dot (QD) with parabolic confinement potential, we investigate pure dephasing due to deformation potential exciton-bulk longitudinal acoustic phonons (LAP) interaction for exciton qubits under the influence of external static electric and magnetic fields by adopting the full quantum-mechanical method of Kunihiro Kojima and Akihisa Tomita. The wave function is found and the dependence of the pure dephasing factor on the confinement length of the QD and time and temperature is discussed. We find the external electric and magnetic fields have important effects on pure dephasing of exciton qubits because exciton-LAP interaction increases, leading to more pure dephasing.展开更多
This paper studies the effective polytropic index in the central plasma sheet (CPS) by using the method of Kartalev et al. (2006), which adopts the denoising technique of Haar wavelet to identify the homogeneous M...This paper studies the effective polytropic index in the central plasma sheet (CPS) by using the method of Kartalev et al. (2006), which adopts the denoising technique of Haar wavelet to identify the homogeneous MHD Bernoulli integral (MBI) and has been frequently used to study the polytropic relation in the solar wind. We chose the quiet CPS crossing by Cluster C1 during the interval 08:51:00-09:19:00 UT on 03 August 2001. In the central plasma sheet, thermal pressure energy per unit mass is the most important part in MBI, and kinetic energy of fluid motion and electromagnetic energy per unit mass are less important. In the MBI, there are many peaks, which correspond to isothermal or near isothermal processes. The interval lengths of homogenous MBI regions are generally less than 1 min. The polytropic indexes are calculated by linearly fitting the data of lnp and Inn within a 16 s window, which is shifted forward by 8 s step length. Those polytropic indexes with IRI ≥0.8 (R is the correlation coefficient between lnp and inn) and p-value≤0.1 in the homogeneous regions are almost all in the range of [0, 1]. The mean and median effective polytropic indexes with high R and low p-value in homogeneous regions are 0.34 and 0.32 respectively, which are much different from the polytropic index obtained by traditional method (αtrad=-0.15). This result indicates that the CPS is not uniform even during quiet time and the blanket applications of polytropic law to plasma sheet may return misleading value of polytropic index. The polytropic indexes in homogeneous regions with a high correlation coefficient basically have good regression significance and are thus credible. These results are very important to understand the energy transport in magnetotail in the MHD frame.展开更多
Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic ...Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.展开更多
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negat...We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.展开更多
Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulabl...Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.展开更多
文摘构建了永磁偏置型故障限流器PMFCL的经济性分析模型,包括材料成本和运行成本两部分。材料成本取决于PMFCL的关键结构参数,基于等效磁路法导出了PMFCL 4个关键结构参数与电感和、电感比以及饱和深度比这3个独立电磁变量间的函数关系;运行成本由铁芯损耗和绕组铜耗组成,并给出了各自的计算方法。针对500 k V PMFCL经济性分析实例,分析了电磁变量对PMFCL经济性的影响,并建立其经济性优化模型,求得了PMFCL的最优成本和对应的结构参数。结果表明,在高压大容量应用场合,PMFCL具有较好的经济性优势。Ansoft Maxwell二维有限元仿真验证了经济性优化模型的合理性。
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Geological survey project of China Geological Survey(No.12120114090201)
文摘We conducted a study on the numerical calculation and response analysis of a transient electromagnetic field generated by a ground source in geological media. One solution method, the traditional discrete image method, involves complex operation, and its digital filtering algorithm requires a large number of calculations. To solve these problems, we proposed an improved discrete image method, where the following are realized: the real number of the electromagnetic field solution based on the Gaver-Stehfest algorithm for approximate inversion, the exponential approximation of the objective kernel function using the Prony method, the transient electromagnetic field according to discrete image theory, and closed-form solution of the approximate coefficients. To verify the method, we tentatively calculated the transient electromagnetic field in a homogeneous model and compared it with the results obtained from the Hankel transform digital filtering method. The results show that the method has considerable accuracy and good applicability. We then used this method to calculate the transient electromagnetic field generated by a ground magnetic dipole source in a typical geoelectric model and analyzed the horizontal component response of the induced magnetic field obtained from the "ground excitation-stratum measurement method. We reached the conclusion that the horizontal component response of a transient field is related to the geoelectric structure, observation time, spatial location, and others. The horizontal component response of the induced magnetic field reflects the eddy current field distribution and its vertical gradient variation. During the detection of abnormal objects, positions with a zero or comparatively large offset were selected for the drill- hole measurements or a comparatively long observation delay was adopted to reduce the influence of the ambient field on the survey results. The discrete image method and forward calculation results in this paper can be used as references for relevant research.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
文摘We mostly investigate two schemes. One is to teleport a multi-mode W-type entangled coherent state using a peculiar bipartite entangled state as the quantum channel different from other proposals. Based on our formalism,teleporting multi-mode coherent state or squeezed state is also possible. Another is that the tripartite entangled state is used as the quantum channel of controlled teleportation of an arbitrary and unknown continuous variable in the case of three participators.
文摘Transient electromagnetic method (TEM),as a non-seismic geophysical exploration mainstream electromagnetic method,is widely used in oil,gas,mineral and other underground resources exploration areas. The coil sensor is generally used to collect data. In view of the problems of incomplete information of the abnormal body and the data loss in the existing TEM single-component coil sensor,a three-component TEM coil sensor is designed. By analyzing the relationship between sensor sensitivity and coil structure parameters,the coil structure and turns are designed. By analyzing the frequency response characteristics of the TEM magnetic field sensor,the signal distortion is reduced by using the under-damped matching mode. By analyzing the distribution of various noise sources of the magnetic sensor,the appropriate amplifier is selected to reduce the background noise. Finally,a three-component TEM induction magnetic field sensor is designed. The weight of the sensor is controlled at 3.2 kg and the working frequency is 10 mHz-10 kHz. The background noises of X and Y components probably keep in 1.5×10^-8 V/ Hz and sensitivities are 8.4 and 9.8 nT/s,respectively,the background noise of vertical component is 2.1× 10^-7 V/ Hz and sensitivity is 18.5 nT/s. Compared with the existing single-component TEM receiving magnetic field sensor,the designed sensor realizes the signal acquisition of three components. Without too much increase in volume and total weight,it improves the sensitivity of the sensor and reduces the background noise,thus the signal-to-noise ratio (SNR) of the signal is improved.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos..42030806,41774125,41804098,41904104)the Key National Research Project of China(Grant No.2018YFC0603300).
文摘In this study,we propose a three-dimensional(3D)forward modeling algorithm of surface-to-borehole transient electromagnetic(SBTEM)fields based on an unstructured vector fi nite-element method to analyze the characteristics of SBTEM responses for complex geoelectrical models.To solve the double-curl diff usion equation for the electric fi eld,we use an unstructured tetrahedral mesh to discretize the model domain and select the unconditionally stable backward Euler scheme to discretize the time derivative.In our numerical experiments,we use a grounded wire as a transmitting source.After validating the algorithm’s eff ectiveness,we first analyze the diffusion characteristics and detectability of the electromagnetic field.After that,we focus our attention on the distribution and the cause of zero bands for Ex and dBy/dt components with the hope of guiding future field surveys.Finally,by simulating diff erent models,we analyze the capability of the SBTEM method in detecting typical mineral veins so that we can provide a reference for mineral resource exploration in the deep earth.
基金Supported by the National Natural Science Foundation of China under Grant No. 10974058the Guangdong Natural Science Foundation under Grant No. 9451063101002088+1 种基金the Shanghai Natural Science Foundation of China under Grant No. 09ZR1421400Science and Technology Program of Shanghai Maritime University under Contract No. 2008475
文摘We adopt the nonequilibrium Green's function method to theoretically study the Kondo effect in a deformed molecule, which is treated as an electron-phonon interaction (EPI) system. The self-energy for phonon part is calculated in the standard many-body diagrammatic expansion up to the second order in EPI strength. We find that the multiple phonon-assisted Kondo satellites arise besides the usual Kondo resonance. In the antiparallel magnetic configuration the splitting of main Kondo peak and phonon-assisted satellites only happen for asymmetrical dot-lead couplings, but it is free from the symmetry for the parallel magnetic configuration. The EPI strength and vibrational frequency can enhance the spin splitting of both main Kondo and satellites. It is shown that the suppressed zero-bias Kondo resonance can be restored by applying an external magnetic field, whose magnitude is dependent on the phononic effect remarkably. Although the asymmetry in tunnel coupling has no contribution to the restoration of spin splitting of Kondo peak, it can shrink the external field needed to switch tunneling magnetoresistance ratio between large negative dip and large positive peak.
基金The project supported by National Natural Science Foundation of China under Grant No.10175057the President Foundation of the Chinese Academy of Sciences
文摘We find quantum mechanical Fourier-Hankel representation transform for an electron moving in a uniform magnetic field. The physical meaning of Fourier decomposition states of electron's coordinate eigenstate and the momentum eigenstate are revealed.
基金supported by National Natural Science Foundation of China under Grant No.10347004
文摘In a two-dimensional quantum dot (QD) with parabolic confinement potential, we investigate pure dephasing due to deformation potential exciton-bulk longitudinal acoustic phonons (LAP) interaction for exciton qubits under the influence of external static electric and magnetic fields by adopting the full quantum-mechanical method of Kunihiro Kojima and Akihisa Tomita. The wave function is found and the dependence of the pure dephasing factor on the confinement length of the QD and time and temperature is discussed. We find the external electric and magnetic fields have important effects on pure dephasing of exciton qubits because exciton-LAP interaction increases, leading to more pure dephasing.
基金supported by the National Natural Science Foundation of China(Grant Nos.41431071,41174141,41474124)the National Basic Research Program of China(Grant No.2011CB811404)
文摘This paper studies the effective polytropic index in the central plasma sheet (CPS) by using the method of Kartalev et al. (2006), which adopts the denoising technique of Haar wavelet to identify the homogeneous MHD Bernoulli integral (MBI) and has been frequently used to study the polytropic relation in the solar wind. We chose the quiet CPS crossing by Cluster C1 during the interval 08:51:00-09:19:00 UT on 03 August 2001. In the central plasma sheet, thermal pressure energy per unit mass is the most important part in MBI, and kinetic energy of fluid motion and electromagnetic energy per unit mass are less important. In the MBI, there are many peaks, which correspond to isothermal or near isothermal processes. The interval lengths of homogenous MBI regions are generally less than 1 min. The polytropic indexes are calculated by linearly fitting the data of lnp and Inn within a 16 s window, which is shifted forward by 8 s step length. Those polytropic indexes with IRI ≥0.8 (R is the correlation coefficient between lnp and inn) and p-value≤0.1 in the homogeneous regions are almost all in the range of [0, 1]. The mean and median effective polytropic indexes with high R and low p-value in homogeneous regions are 0.34 and 0.32 respectively, which are much different from the polytropic index obtained by traditional method (αtrad=-0.15). This result indicates that the CPS is not uniform even during quiet time and the blanket applications of polytropic law to plasma sheet may return misleading value of polytropic index. The polytropic indexes in homogeneous regions with a high correlation coefficient basically have good regression significance and are thus credible. These results are very important to understand the energy transport in magnetotail in the MHD frame.
基金the National Natural Science Foundation of China(Grant Nos.12172321 and 11472239)the Hebei Provincial Natural Science Foundation of China(Grant No.A2020203007).
文摘Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields.
基金supported by Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China(Grant No.11171028)
文摘We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.
基金supported by the National Natural Science Foundation of China(21901133,22171155 and 22071126)the State Key Laboratory of Fine Chemicals(KF1905)。
文摘Switching on/off single-molecule magnets(SMMs)at room temperature is still a challenge in moleculebased magnets.Herein,two photochromic Ln-based(Ln=Dy,Tb)phosphonate coordinated polymers were synthesized with regulable SMM behavior.The reversible room-temperature photo-coloration was an electron transfer process with a generation of relatively stable radicals,characterized by structural analyses,ultraviolet-visible,luminescence and electron spin resonance spectra and magnetic measurements.Importantly,owing to the antiferromagnetic coupling interactions between Ln^(3+) ions and photogenerated radicals,the room-temperature light irradiation surprisingly switched off the SMM behavior,showing the first example of radicalquenched SMMs in the molecule-based magnets.Moreover,the silient SMM behavior could be recovered after eliminating photogenerated radicals via heat treatment,showing a reversible off/on switch of SMMs via light and heat.This work constructs a system for switching off/on SMMs through electron transfer photochromism,providing a visual operation way via naked-eye-detectable coloration for the switchable SMMs.