本文描述了一个采用复镜像方法来解析计算CMOS射频电路中衬底涡旋电流对螺旋电感元件的影响.其基本思路是将衬底里分布着的涡旋电流等效为电感金属绕组的一个镜像,但是这个镜像所处的位置是一个复数.通过把计算出的部分电感和部分电容...本文描述了一个采用复镜像方法来解析计算CMOS射频电路中衬底涡旋电流对螺旋电感元件的影响.其基本思路是将衬底里分布着的涡旋电流等效为电感金属绕组的一个镜像,但是这个镜像所处的位置是一个复数.通过把计算出的部分电感和部分电容矩阵组装成一个PEEC(部分元件等效电路)的办法,能够进一步算出螺旋电感的交流小信号参数.基于该算法实现的程序(称为SCAPE)的正确性已经通过大量的例子测试,并跟一些广泛使用的软件(如UC Berkeley的ASITIC和Agilent的ADS M om entum)进行了比较,结果证明了SCAPE具有精度高、运算速度快的优势.展开更多
Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture ...Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture of reaction mechanism,yet the reactants for water splitting reactions are unfortunately not fully understood.Here we utilize magnetic field to understand proton transport in HER,and hydroxide ion transport in OER,to discuss the possible implications on understanding the reactants for HER and OER.Magnetic field is a known tool for changing the movement of charged species like ions,e.g.the magnetic‐field‐improved Cu^(2+)transportation near the electrode in Cu electrodeposition.However,applying a magnetic field does not affect the HER or OER rate across various pH,which challenges the traditional opinion that charged species(i.e.proton and hydroxide ion)act as the reactant.This anomalous response of HER and OER to magnetic field,and the fact that the transport of proton and hydroxide ion follow Grotthuss mechanism,collectively indicate water may act as the universal reactant for HER and OER across various pH.With the aid of magnetic field,this work serves as an understanding of water might be the reactant in HER and OER,and possibly in other electrocatalysis reactions involving protonation and deprotonation step.A model that simply focuses on the charged species but overlooking the complexity of the whole electrolyte phase where water is the dominant species,may not reasonably reflect the electrochemistry of HER and OER in aqueous electrolyte.展开更多
The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting p...The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.展开更多
We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The...We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot- Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.展开更多
Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we al...Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.展开更多
The analytical solution of Helmholtz equation for magnetic vector potential in anisotropic and nonhomogeneous region is presented. The solution is built of a combination of both Bessel and power functions. There are d...The analytical solution of Helmholtz equation for magnetic vector potential in anisotropic and nonhomogeneous region is presented. The solution is built of a combination of both Bessel and power functions. There are developed two examples that proof the accuracy of the proposed analytical solution. First example is showing the electromagnetic field analysis in slot of ferromagnetic rotor of electrical induction machine. The second example approaches electromagnetic field wave in resonator of the form of rectangular cavity The analytical solution presented is treated as an exact one and is being compared with the numerical solution, e.g., given by finite element method. The analytical solution can be used as a benchmark test for numerical algorithms,展开更多
Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained...Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined.展开更多
文摘本文描述了一个采用复镜像方法来解析计算CMOS射频电路中衬底涡旋电流对螺旋电感元件的影响.其基本思路是将衬底里分布着的涡旋电流等效为电感金属绕组的一个镜像,但是这个镜像所处的位置是一个复数.通过把计算出的部分电感和部分电容矩阵组装成一个PEEC(部分元件等效电路)的办法,能够进一步算出螺旋电感的交流小信号参数.基于该算法实现的程序(称为SCAPE)的正确性已经通过大量的例子测试,并跟一些广泛使用的软件(如UC Berkeley的ASITIC和Agilent的ADS M om entum)进行了比较,结果证明了SCAPE具有精度高、运算速度快的优势.
基金supported by the Singapore MOE Tier 2 MOE2018-T2-2-027the Singapore National Research Foundation under its Campus for Research Excellence and Technological Enterprise (CREATE) Programme
文摘Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture of reaction mechanism,yet the reactants for water splitting reactions are unfortunately not fully understood.Here we utilize magnetic field to understand proton transport in HER,and hydroxide ion transport in OER,to discuss the possible implications on understanding the reactants for HER and OER.Magnetic field is a known tool for changing the movement of charged species like ions,e.g.the magnetic‐field‐improved Cu^(2+)transportation near the electrode in Cu electrodeposition.However,applying a magnetic field does not affect the HER or OER rate across various pH,which challenges the traditional opinion that charged species(i.e.proton and hydroxide ion)act as the reactant.This anomalous response of HER and OER to magnetic field,and the fact that the transport of proton and hydroxide ion follow Grotthuss mechanism,collectively indicate water may act as the universal reactant for HER and OER across various pH.With the aid of magnetic field,this work serves as an understanding of water might be the reactant in HER and OER,and possibly in other electrocatalysis reactions involving protonation and deprotonation step.A model that simply focuses on the charged species but overlooking the complexity of the whole electrolyte phase where water is the dominant species,may not reasonably reflect the electrochemistry of HER and OER in aqueous electrolyte.
基金Project(2005CB623707) supported by the National Basic Research Program of China Projects(2007CB613701 and 2007CB613702) supported by the National Key Basic Research Program of China+2 种基金Projects(50974037,51004032 and 50904018) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098) supported by the New Century Excellent Talents in University,Ministry of Education,ChinaProject(20100471468) supported by China Postdoctoral Science Foundation
文摘The working principle of LFEC(Low frequency electromagnetic casting) process developed in Northeastern University, China was introduced and the metallurgical results of LFEC were discussed according to the casting practices. The low frequency field around the mold produces Lorenz force, which can be divided into two parts: one is the potential force which will be balanced by a pressure gradient of the liquid and results in the formation of a convex surface meniscus and improves the surface quality; the other is the rotary force which stirs the liquid in the mold to refine the microstructures and homogenize the distribution of alloying elements. LFEC can refine microstructures remarkably, improve surface quality of the ingots, depress macrosegregation and eliminate cracks. Some new technologies, such as horizontal direct chill casting under low-frequency electromagnetic field (HLEC), DC casting of hollow billets under electromagnetic fields (HBEC), electromagnetic modifying of hypereutectic A1-Si alloys(EMM), air film casting under static magnetic field (AFCM), and multi-ingots casting under low-frequency magnetic field (MLFEC) were developed based on LFEC.
基金Supported by the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation,NIBIO
文摘We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot- Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequeny excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems.
文摘Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.
文摘The analytical solution of Helmholtz equation for magnetic vector potential in anisotropic and nonhomogeneous region is presented. The solution is built of a combination of both Bessel and power functions. There are developed two examples that proof the accuracy of the proposed analytical solution. First example is showing the electromagnetic field analysis in slot of ferromagnetic rotor of electrical induction machine. The second example approaches electromagnetic field wave in resonator of the form of rectangular cavity The analytical solution presented is treated as an exact one and is being compared with the numerical solution, e.g., given by finite element method. The analytical solution can be used as a benchmark test for numerical algorithms,
基金Supported by the Research Fund of Mersin University in TURKEY with project number:2016-1-AP4-1425
文摘Creation of fermionic particles by a time-dependent electric field and a space-dependent magnetic field is studied with the Bogoulibov transformation method. Exact analytic solutions of the Dirac equation are obtained in terms of the Whittaker functions and the particle creation number density depending on the electric and magnetic fields is determined.