We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with sy...We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.展开更多
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf...To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.展开更多
Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport...Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport system, we propose parallel synchronous drive of used the PM-LSM (permanent magnet linear synchronous motor). It can pass luggage without having to stop the working. When you establish "parallel synchronous drive", a motor follows the other motor. In our laboratory, one of the motors is called "master motor" and the other motor called "slave motor". The master motor's speed and position pass slave motor then establish parallel synchronous drive. Therefore, slave motor requires high-responsive and precision that follows the master motor. This paper focuses on the control of the slave motor.展开更多
The analysis and simulation of power system are becoming more and more challenging as the complexity of system topology and components has been increased. In this paper, a hybrid parallel algorithm is proposed for the...The analysis and simulation of power system are becoming more and more challenging as the complexity of system topology and components has been increased. In this paper, a hybrid parallel algorithm is proposed for the real-time electromagnetic transient simulation (EMTS) of integrated power systems containing multiphase machines. The proposed algorithm is com- posed of a novel network partition method called component level parallelization and the Multi-Area Thevenin Equivalent (MATE) method, which extends the flexibility of the network partition in parallel simulation. Moreover, several methods are developed to enhance the efficiency of the communication and computation. Power systems with up to 410 single-phase elec- trical nodes and 336 switches are simulated in a time step of 50 ~ts to validate the proposed algorithm.展开更多
基金sponsored by National Natural Science Foundation of China(Grant No.40774029,40374024)the National Hi-tech Rsearch and Development Program of China(863 Program)(No.2007AA09Z310,)the Program for New Century Excellent Talents in University(NCET)
文摘We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.
基金supported by the Key Natural Science Foundation(No.41530320)Natural Science Foundation(No.41274121)+1 种基金Natural Science Foundation for young scientist(No.41404093)the Projects on the Development of the Key Equipment of Chinese Academy of Science(No.ZDYZ2012-1-03)
文摘To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
文摘Recently, linear motors can have high speed control, high acceleration-deceleration. So linear motors are widely used in industrial applications such as precision machine tools. In our laboratory focusing on transport system, we propose parallel synchronous drive of used the PM-LSM (permanent magnet linear synchronous motor). It can pass luggage without having to stop the working. When you establish "parallel synchronous drive", a motor follows the other motor. In our laboratory, one of the motors is called "master motor" and the other motor called "slave motor". The master motor's speed and position pass slave motor then establish parallel synchronous drive. Therefore, slave motor requires high-responsive and precision that follows the master motor. This paper focuses on the control of the slave motor.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51277104,51207076)the Postdoctoral Science Foundation of China (Grant No. 20110490351)
文摘The analysis and simulation of power system are becoming more and more challenging as the complexity of system topology and components has been increased. In this paper, a hybrid parallel algorithm is proposed for the real-time electromagnetic transient simulation (EMTS) of integrated power systems containing multiphase machines. The proposed algorithm is com- posed of a novel network partition method called component level parallelization and the Multi-Area Thevenin Equivalent (MATE) method, which extends the flexibility of the network partition in parallel simulation. Moreover, several methods are developed to enhance the efficiency of the communication and computation. Power systems with up to 410 single-phase elec- trical nodes and 336 switches are simulated in a time step of 50 ~ts to validate the proposed algorithm.