This paper mainly explores the electromagnetic perturbations of black holes in Gauss-Bonnet gravity and calculates the quasinormal modes for the 5-dimensional, 6-dimensional, 7-dimensional, and 8-dimensional black hol...This paper mainly explores the electromagnetic perturbations of black holes in Gauss-Bonnet gravity and calculates the quasinormal modes for the 5-dimensional, 6-dimensional, 7-dimensional, and 8-dimensional black holes. When α increases from zero, the imaginary part of w will increase accordingly till it reaches a maximum value where it starts to decrease. When a reaches zero, the quasinormal modes will approach their Schwarzschild values. If the Gauss-Bonnet coupling parameter α is large enough, the quasinormal modes will be proportional to α and the oscillation frequency will become high consequently . When L is large enough, the minimum value of -Im ω will approach a value too. We calculate that value for different dimensions.展开更多
If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency ...If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.展开更多
基金Acknowledgments Thank Ding-Fang Zeng for very useful discussions.
文摘This paper mainly explores the electromagnetic perturbations of black holes in Gauss-Bonnet gravity and calculates the quasinormal modes for the 5-dimensional, 6-dimensional, 7-dimensional, and 8-dimensional black holes. When α increases from zero, the imaginary part of w will increase accordingly till it reaches a maximum value where it starts to decrease. When a reaches zero, the quasinormal modes will approach their Schwarzschild values. If the Gauss-Bonnet coupling parameter α is large enough, the quasinormal modes will be proportional to α and the oscillation frequency will become high consequently . When L is large enough, the minimum value of -Im ω will approach a value too. We calculate that value for different dimensions.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775100 and 10974137
文摘If a coherent perturbation field is used to couple the excited level of the coupling transition in the five-level K-type atom with another higher excited level, the two-photon electromagnetically induced transparency can be locally modulated by altering the parameters of the additional perturbation field. With different detunings of the coherent perturbation field, the absorption peak or transparency window with sharp and high-contrast speetrM feature can be generated in the two-photon absorption spectrum. The physical interpretation of these phenomena is given in terms of the dressed states.