Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagne...Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagnetic profiling (MM-VEP) technique for surface-to-borehole electromagnetic surveying. Based on the difference in conductivities between reservoirs with different concentrations of oil and water, MM-VEP can be used to monitor reservoirs as they are injected with water. The MM-VEP response in five azimuth planes is modeled with three-dimensional (3D) integral equation calculations. The progress of waterflooding in four stages for enhanced oil recovery is shown to be indicated by field anomalies MM-VEP caused by variations in the reservoir resistivity. Numerical modeling demonstrates that MM-VEP measurements provides enough quantitative information from an underground reservoir to accurately detect oil deposits and monitor the progress of waterflooding.展开更多
Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing...Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.展开更多
基金supported by the National Science and Technology Major Project(No.2011ZX05019-007)National Natural Science Foundation of China(No.41604097)+1 种基金China Postdoctoral Science Foundation(No.2016M592611)Project(Nos.002401003503 and 002401003514)from Guilin University of Technology
文摘Dynamic exploration for oil and gas requires careful monitoring of reservoir contents for safety and efficiency of oil extraction. This paper proposes a multi-source and multi-azimuth walk-around vertical electromagnetic profiling (MM-VEP) technique for surface-to-borehole electromagnetic surveying. Based on the difference in conductivities between reservoirs with different concentrations of oil and water, MM-VEP can be used to monitor reservoirs as they are injected with water. The MM-VEP response in five azimuth planes is modeled with three-dimensional (3D) integral equation calculations. The progress of waterflooding in four stages for enhanced oil recovery is shown to be indicated by field anomalies MM-VEP caused by variations in the reservoir resistivity. Numerical modeling demonstrates that MM-VEP measurements provides enough quantitative information from an underground reservoir to accurately detect oil deposits and monitor the progress of waterflooding.
基金Natural Science Foundation of Tianjin(No.043100811)the Key Program of Natural Science Foundation of Tianjin(No.08JCZDJC17500)
文摘Low valence vanadium oxide(VO2-x) thin films were prepared on SiO2/Si substrates at room temperature by direct current facing targets reactive magnetron sputtering, and then proc- essed through rapid thermal annealing. The effects of the annealing on the structure and phase transition property of VO2 were discussed. X-ray photoelectron spectroscopy, X-ray diffraction tech- nique and Fourier transform infrared spectroscopy were employed to study the phase composition and structure of the thin films. The resistance-temperature property was measured. The results show that VO2 thin film is obtained after annealed at 320 ℃ for 3 h, its phase transition tempera- ture is 56 ℃, and the resistance changes by more than 2 orders. The vanadium oxide thin films are applicable in thermochromic smart windows, and the deposition and annealing process is compatible with micro electromechanical system process.