This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. ...This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.展开更多
It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the fr...It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.展开更多
The vertical ionogram can provide the important ionospheric parameters, such as critical frequency, virtual height and electron density, for ionospheric research. The oblique ionosonde has the ability to detect the io...The vertical ionogram can provide the important ionospheric parameters, such as critical frequency, virtual height and electron density, for ionospheric research. The oblique ionosonde has the ability to detect the ionosphere over sea and other terrain where it is not practical to deploy vertical sounder and provide more ionograms with less transmitting and receiving devices. Therefore, the conversion of the oblique ionogram to vertical ionogram for obtaining the important ionospheric parameters is a very useful inversion technology. The experimental comparison between oblique and vertical detections was carried out in the equatorial ionospheric anomaly (EIA) region of south China on 25 and 26 August 2010. The oblique detecting path was from Wuhan to Shenzhen and the VI ionosonde was located in the midpoint of the oblique path. The oblique ionogram reversion results showed a small deviation of the critical frequency, minimum virtual height as well as the electron density profile of the ionospheric F layer, as compared with the real vertical observations.展开更多
文摘This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.
基金supported by the National Natural Science Foundation of China(Grant Nos.41174023,41374014 and 41304030)the National High Technology Research and Development Program of China(Grant No.2013AA122501)the Data analysis center(Grant No.GFZX0301040308-06)
文摘It is a well known fact that ionospheric delay error is a predominant factor which influences the positioning accuarcy of GNSS.Although the main part of the first-order ionospheric delay error can be removed by the frequency-dependent behaviors of the ionosphere,the second-order ionospheric delay error must be eliminated to achieve millimetre-scale positioning accuracy.Due to COSMIC occultation providing electron density profiles on the global scale,the paper presents the first-order and the second-order ionospheric delay error analysis on the global scale using the inversion of electron density profiles from COSMIC occultation data during 2009–2011.Firstly,because of the special geographical location of three ISR(incoherent scatter radar),the first-order and the second-order ionospheric delay errors are calculated and discussed;the paper also shows and analyzes the diurnal,seasonal,semi-annual variation of ionospheric delay error with respect to signal direction.Results show that for the L1 signal path,the first-order ionospheric delay error is the largest near the equator,which is circa 7 m;the maximum second-order ionospheric delay error are circa 0.6 cm,0.8 cm and 0.6 cm respectively for L1 signals coming from the zenith,the north and the south at 10 degree elevation angles.The second-order ionospheric delay error on the L1 signal path from zenith are the symmetry between 15°and 15°with respect to magnetic equator,and are nearly zero at the magnetic equator.For the first time,the second-order ionospheric delay error on the global scale is presented,so this research will greatly contribute to analysing the higher-order ionospheric delay error characteristics on the global scale.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40804042 and 41074115)the Post Doctor Foundation of China (Grant No. 200902445)the Fundamental Research Funds for the Central Universities (Grant No. 4081004)
文摘The vertical ionogram can provide the important ionospheric parameters, such as critical frequency, virtual height and electron density, for ionospheric research. The oblique ionosonde has the ability to detect the ionosphere over sea and other terrain where it is not practical to deploy vertical sounder and provide more ionograms with less transmitting and receiving devices. Therefore, the conversion of the oblique ionogram to vertical ionogram for obtaining the important ionospheric parameters is a very useful inversion technology. The experimental comparison between oblique and vertical detections was carried out in the equatorial ionospheric anomaly (EIA) region of south China on 25 and 26 August 2010. The oblique detecting path was from Wuhan to Shenzhen and the VI ionosonde was located in the midpoint of the oblique path. The oblique ionogram reversion results showed a small deviation of the critical frequency, minimum virtual height as well as the electron density profile of the ionospheric F layer, as compared with the real vertical observations.