电离层总电子含量(total electron content,TEC)是一个重要的电离层物理参量,对电离层物理的理论研究以及电波传播的应用研究有着十分重要的意义.然而,在理论和应用研究过程中,基于单层假设的电离层TEC空间分布只能反映电离层的水平结...电离层总电子含量(total electron content,TEC)是一个重要的电离层物理参量,对电离层物理的理论研究以及电波传播的应用研究有着十分重要的意义.然而,在理论和应用研究过程中,基于单层假设的电离层TEC空间分布只能反映电离层的水平结构,而难以反映电离层的垂直结构.展开更多
This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. ...This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.展开更多
Solar radiation, which varies over multiple temporal scales, modulates remarkably the evolution of the ionosphere. The solar activity dependence of the ionosphere is a key and fundamental issue in ionospheric physics,...Solar radiation, which varies over multiple temporal scales, modulates remarkably the evolution of the ionosphere. The solar activity dependence of the ionosphere is a key and fundamental issue in ionospheric physics, providing information essential to understanding the variations in the ionosphere and its processes. Selected recent studies on solar activity effects of the ionosphere are briefly reviewed in this report. This report focuses on (1) observations of solar irradiance at X-ray and extreme ultraviolet wavelengths and the outstanding problems of solar proxies, in the view of ionospheric studies, (2) new findings and improved representations of the features of the solar activity dependence of ionospheric key parameters and the corresponding physical processes, (3) possible phenomena in the ionosphere under extremely high and low solar activity conditions that are unique, as indicated by historical solar datasets and the deep solar minimum of solar cycle 23/24, and (4) statistical studies and model simulations of the ionosphere response to solar flares. The above-mentioned studies provide new clues for comprehensively explaining basic processes in the ionosphere and improving the prediction capability of ionospheric models and related applications.展开更多
In the mainland of China, the number of ionospheric research groups is more than 10. Around 110 articles related to ionospheric physics have been published during 2014–2015. In this annual national report of the Comm...In the mainland of China, the number of ionospheric research groups is more than 10. Around 110 articles related to ionospheric physics have been published during 2014–2015. In this annual national report of the Committee on Space Research(COSPAR), we will outline some recent progresses in ionospheric studies conducted by the Chinese mainland scientists in the past 2 years. These investigations cover(1) the ionosphere responses to geomagnetic activities;(2) ionospheric climatology and structures;(3) couplings between the ionosphere, plasmasphere and lower atmosphere, and possible seismic signatures in the ionosphere;(4) ionospheric irregularities and scintillation;(5) ionospheric models, data assimilation and simulations;(6) ionospheric dynamics and electrodynamics;(7) progresses in the observation methodology and technique; and(8) planetary ionospheres. Such investigations will strengthen our ability to monitor the ionosphere,provide a better understanding of the ionospheric states and the underlying fundamental processes, and improve the ionospheric modeling, forecasting, and related applications.展开更多
In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 ...In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.展开更多
文摘This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.
基金supported by the National Natural Science Foundation of China (40725014)the Specialized Research Fund for State Key Laboratories
文摘Solar radiation, which varies over multiple temporal scales, modulates remarkably the evolution of the ionosphere. The solar activity dependence of the ionosphere is a key and fundamental issue in ionospheric physics, providing information essential to understanding the variations in the ionosphere and its processes. Selected recent studies on solar activity effects of the ionosphere are briefly reviewed in this report. This report focuses on (1) observations of solar irradiance at X-ray and extreme ultraviolet wavelengths and the outstanding problems of solar proxies, in the view of ionospheric studies, (2) new findings and improved representations of the features of the solar activity dependence of ionospheric key parameters and the corresponding physical processes, (3) possible phenomena in the ionosphere under extremely high and low solar activity conditions that are unique, as indicated by historical solar datasets and the deep solar minimum of solar cycle 23/24, and (4) statistical studies and model simulations of the ionosphere response to solar flares. The above-mentioned studies provide new clues for comprehensively explaining basic processes in the ionosphere and improving the prediction capability of ionospheric models and related applications.
基金supported by National Natural Science Foundation of China (41231065, 41321003)National Key Basic Research Program of China (2012CB825604)the Projects of Chinese Academy of Sciences (KZZD-EW-01-3)
文摘In the mainland of China, the number of ionospheric research groups is more than 10. Around 110 articles related to ionospheric physics have been published during 2014–2015. In this annual national report of the Committee on Space Research(COSPAR), we will outline some recent progresses in ionospheric studies conducted by the Chinese mainland scientists in the past 2 years. These investigations cover(1) the ionosphere responses to geomagnetic activities;(2) ionospheric climatology and structures;(3) couplings between the ionosphere, plasmasphere and lower atmosphere, and possible seismic signatures in the ionosphere;(4) ionospheric irregularities and scintillation;(5) ionospheric models, data assimilation and simulations;(6) ionospheric dynamics and electrodynamics;(7) progresses in the observation methodology and technique; and(8) planetary ionospheres. Such investigations will strengthen our ability to monitor the ionosphere,provide a better understanding of the ionospheric states and the underlying fundamental processes, and improve the ionospheric modeling, forecasting, and related applications.
基金supported by the State Key Development Program for Basic Research of China(Grant No. 2011CBA00602)the National Natural Science Foundation of China(Grant Nos. 60876076 and 60976013)
文摘In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.