Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity ...Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.展开更多
SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensi...SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.展开更多
A dual-shell Si/TiO2/CFs composite was synthesized through a simple method to deal with the intrinsic drawbacks of silicon-based anode,in terms of huge volume change,unstable SEI films,and low electronic and ionic con...A dual-shell Si/TiO2/CFs composite was synthesized through a simple method to deal with the intrinsic drawbacks of silicon-based anode,in terms of huge volume change,unstable SEI films,and low electronic and ionic conductivity.The inner rigid TiO2 shell alleviates the huge volume expansion of the nano silicon,and the outer resilient carbon fiber,which is porous and staggered,is beneficial to the rapid transport of electrons and ions.The as-prepared Si/TiO2/CFs composite displays a superior reversible specific capacity of 583.4 mA·h/g,high rate capability and decent cycling performance.The dual-shell encapsulation method provides a guideline for other anode materials with huge volume expansion during the cycling process.展开更多
α-Fe2O3 nanotubes was successfully prepared by single nozzle electrospinning method. Scanning electron microscope (SEM) was used to characterize the morphology of α-Fe2O3 nanotubes. The gas sensing properties of ...α-Fe2O3 nanotubes was successfully prepared by single nozzle electrospinning method. Scanning electron microscope (SEM) was used to characterize the morphology of α-Fe2O3 nanotubes. The gas sensing properties of α-Fe2O3 nanotubes were investigated in detail. The results exhibit relatively good sensing properties to acetone at 240℃. The response and recovery times are about 3 and 5 s, respectively. The structure of nanotubes is beneficial to the gas sensing properties, which will enlarge the surface-to-volume ratio of α-Fe2O3 and then be available for the transfer of gas, and thus improved the sensor performance consequentially.展开更多
The introduction of electrospinning technique in synthesis of supported microporous membranes and films opens bright pro- spects for mass production and practical applications. This novel and promising strategy has wi...The introduction of electrospinning technique in synthesis of supported microporous membranes and films opens bright pro- spects for mass production and practical applications. This novel and promising strategy has wide suitable range for various substrates with the possibility of large-area processing. We successfully synthesized several kinds of microporous materials into high quality membranes and films on different shaped supports by this method, such as zeolite NaA and pure-silica-zeolite Beta membranes on porous A1203 tube, zeolite NaY membrane on stainless steel net and a metal-organic framework Eu(BTC)(H20) DMF (JUC-32) film on porous silica disc. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used as characterization means. The results verified the effectiveness of this new approach in fabrication of membranes and films.展开更多
Stretchable color-changing fibers are urgently demanded for smart textiles/clothing due to their perfect implantability,permeability of vapor and heat,and flexibility/stretchability.Herein,stretchable electrothermochr...Stretchable color-changing fibers are urgently demanded for smart textiles/clothing due to their perfect implantability,permeability of vapor and heat,and flexibility/stretchability.Herein,stretchable electrothermochromic fibers were fabricated with unconventional stretchable conductive fibers as core layers and thermochromic coatings as shell layers.In the stretchable conductive fibers,hierarchical porous structures with percolative one-dimensional(1 D)conductive networks were constructed through phase inversion of carbon nanotube/polyurethane(CNT/PU)solutions.With the deposition of silver nanoparticles(AgN Ps)on the surface of micro-pores,electrically conductive dual-pathways consisting of0 D AgN Ps and 1 D CNTs were formed to significantly enhance the electric conductivity and thus improve the electrothermal performance of the fibers.More importantly,because of the connective CNTs and AgN Ps,such dual-pathways ensured the electron transport under the stretching state,preventing the sharp decay of conductivity and electrothermal performance.Through the continuous wet-spinning method,the stretchable conductive fibers can be easily obtained with the length up to several meters.At last,stretchable electrothermochromic fibers were prepared with two color-changing modes and implanted into textile perfectly,advancing their applications in wearable display and military adaptive camouflage of smart clothing.展开更多
In this study, we combined silver nanowires with cupro fabrics using a dipping- drying method to prepare electrically conductive fabrics. The silver nanowires were first adhered to and then absorbed by microfibers to ...In this study, we combined silver nanowires with cupro fabrics using a dipping- drying method to prepare electrically conductive fabrics. The silver nanowires were first adhered to and then absorbed by microfibers to form electrically conductive fibers. They also filled the gaps and spaces between the microfibers, and were stacked or piled together to form networks with high electrical conductivity. The electrically conductive fabric had low resistance and good stretchability, e.g., 0.0047-0.0091 Ωin the strain range of 0-190%. They also exhibited stable electrical conductivity, as well as excellent flexibility, which remained even when the fabric was stretched, shrunk, or bent. The results show that the electrically conductive fabric can be used as a smart textile, especially in fields associated with weaving, clothing, food products, lifestyle products, medicine, biology, electronics, aviation, and military equipment and accessories.展开更多
Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphol...Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(2137312021471022)+5 种基金the Development of Science and Technology Plan of Jilin ProvinceChina(2010154920130102001JC)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT13022)of Chinathe Program of Jilin Provincial Education Department(20131302013146)~~
文摘Vanadium pentoxide(V2O5)/molybdenum trioxide(MoO 3) composites with different molar ratios of vanadium(V) to molybdenum(Mo) were synthesized via a simple electrospinning technique. The photocatalytic activity of the composites were evaluated by their ability to photodegrade methylene blue and dimethyl phthalate(DMP) under visible-light irradiation. Compared with pure V2O5 and MoO 3,the V2O5/MoO 3 composites showed enhanced visible-light photocatalytic activity because of a V 3d impurity energy level and the formation of heterostructures at the interface between V2O5 and MoO 3. The optimal molar ratio of V to Mo in the V2O5/MoO 3 composites was found to be around 1/2. Furthermore,high-performance liquid chromatographic monitoring revealed that phthalic acid was the main intermediate in the photocatalytic degradation process of DMP.
基金This work was supported by the National Natural Science Foundation of China (No.U1432108) and the Fundamental Research Funds for the Central Universities (No.WK2320000034).
文摘SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were system- atically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300 ℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.
基金Project(51772331)supported by the National Natural Science Foundation of ChinaProject(2018YFB1106000)supported by the National Key Technologies R&D Program of China
文摘A dual-shell Si/TiO2/CFs composite was synthesized through a simple method to deal with the intrinsic drawbacks of silicon-based anode,in terms of huge volume change,unstable SEI films,and low electronic and ionic conductivity.The inner rigid TiO2 shell alleviates the huge volume expansion of the nano silicon,and the outer resilient carbon fiber,which is porous and staggered,is beneficial to the rapid transport of electrons and ions.The as-prepared Si/TiO2/CFs composite displays a superior reversible specific capacity of 583.4 mA·h/g,high rate capability and decent cycling performance.The dual-shell encapsulation method provides a guideline for other anode materials with huge volume expansion during the cycling process.
基金supported by the Jilin Environment Office(2009-22)Jilin Provincial Science and Technology Department(20100344)the National Innovation Experiment Program for University Students(2010C65188)
文摘α-Fe2O3 nanotubes was successfully prepared by single nozzle electrospinning method. Scanning electron microscope (SEM) was used to characterize the morphology of α-Fe2O3 nanotubes. The gas sensing properties of α-Fe2O3 nanotubes were investigated in detail. The results exhibit relatively good sensing properties to acetone at 240℃. The response and recovery times are about 3 and 5 s, respectively. The structure of nanotubes is beneficial to the gas sensing properties, which will enlarge the surface-to-volume ratio of α-Fe2O3 and then be available for the transfer of gas, and thus improved the sensor performance consequentially.
基金supported by the National Basic Research Program of China (2011CB808703, 2012CB821700)the National Natural Science Foundation of China (91022030, 21101072)"111" project (B07016)
文摘The introduction of electrospinning technique in synthesis of supported microporous membranes and films opens bright pro- spects for mass production and practical applications. This novel and promising strategy has wide suitable range for various substrates with the possibility of large-area processing. We successfully synthesized several kinds of microporous materials into high quality membranes and films on different shaped supports by this method, such as zeolite NaA and pure-silica-zeolite Beta membranes on porous A1203 tube, zeolite NaY membrane on stainless steel net and a metal-organic framework Eu(BTC)(H20) DMF (JUC-32) film on porous silica disc. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used as characterization means. The results verified the effectiveness of this new approach in fabrication of membranes and films.
基金supported by the National Natural Science Foundation of China(51672043)Donghua University Distinguished Young Professor Program(LZB2019002)+1 种基金Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2017QNRC001)the Fundamental Research Funds for the Central Universities(CUSF-DH-D-2018006)。
文摘Stretchable color-changing fibers are urgently demanded for smart textiles/clothing due to their perfect implantability,permeability of vapor and heat,and flexibility/stretchability.Herein,stretchable electrothermochromic fibers were fabricated with unconventional stretchable conductive fibers as core layers and thermochromic coatings as shell layers.In the stretchable conductive fibers,hierarchical porous structures with percolative one-dimensional(1 D)conductive networks were constructed through phase inversion of carbon nanotube/polyurethane(CNT/PU)solutions.With the deposition of silver nanoparticles(AgN Ps)on the surface of micro-pores,electrically conductive dual-pathways consisting of0 D AgN Ps and 1 D CNTs were formed to significantly enhance the electric conductivity and thus improve the electrothermal performance of the fibers.More importantly,because of the connective CNTs and AgN Ps,such dual-pathways ensured the electron transport under the stretching state,preventing the sharp decay of conductivity and electrothermal performance.Through the continuous wet-spinning method,the stretchable conductive fibers can be easily obtained with the length up to several meters.At last,stretchable electrothermochromic fibers were prepared with two color-changing modes and implanted into textile perfectly,advancing their applications in wearable display and military adaptive camouflage of smart clothing.
文摘In this study, we combined silver nanowires with cupro fabrics using a dipping- drying method to prepare electrically conductive fabrics. The silver nanowires were first adhered to and then absorbed by microfibers to form electrically conductive fibers. They also filled the gaps and spaces between the microfibers, and were stacked or piled together to form networks with high electrical conductivity. The electrically conductive fabric had low resistance and good stretchability, e.g., 0.0047-0.0091 Ωin the strain range of 0-190%. They also exhibited stable electrical conductivity, as well as excellent flexibility, which remained even when the fabric was stretched, shrunk, or bent. The results show that the electrically conductive fabric can be used as a smart textile, especially in fields associated with weaving, clothing, food products, lifestyle products, medicine, biology, electronics, aviation, and military equipment and accessories.
基金supported by the National Natural Science Foundation of China (21571073, 51302099, 51472097)the Ministry of Science and Technology of China (2015CB932600)+2 种基金the Hubei Provincial Natural Science Foundation (2016CFA031)the Program for Huazhong University of Science and Technology (HUST) Interdisciplinary Innovation Team (2015ZDTD038)the Fundamental Research Funds for the Central University (2017KFKJXX007)
文摘Electrospinning is firstly used to one-pot synthesis of Li3VO4@C nanofibers in a large scale. Although with the presence of organic sources in synthesis process, the pure phase Li3VO4 with superior nanofibrous morphology is still successfully obtained through adjusting different heat treatment processes and different vanadium sources. The prepared Li3VO4@C nanofibers exhibit a unique structure in which nanosized Li3VO4 particles are uniformly embedded in amorphous carbon matrix. Compared with LiBVO4/C powder, Li3VO4@C nanofibers display enhanced reversible capacity of 451 mAhg^-1 at 40mAg^-1 with an increased initial coulombic efficiency of 82.3%, and the capacity can remain at 394 mAh g ^-1 after 100 cycles. This superior electrochemical performance can be attributed to its unique structure which ensures a high reactivity by nanosized Li3VO4, more stable electrode/electrolyte interface by carbon encapsulation, improved electronic conductivity and buffered volume changes by flexible carbon matrix. The electrospinning technology provides an effective method to obtain high performance Li3VO4 as a promising anode material for lithium-ion batteries.