In the last years, the production of optical fibers cables has made possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, se...In the last years, the production of optical fibers cables has made possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to electromagnetic signal transmission from a NaI(TI) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers large passband, small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches.展开更多
The application of wireline formation tester(WFT)gradually extends in oil-field with the constant improvement of instrument functions.Applications of WFT in oil and gas exploration in Tarim Oilfield,such as formation ...The application of wireline formation tester(WFT)gradually extends in oil-field with the constant improvement of instrument functions.Applications of WFT in oil and gas exploration in Tarim Oilfield,such as formation pressure measurement,are described,and testing efficiency between drill stem testing(DST)and WFT are compared,especially comprised of PVT sampling,hydrocarbon composition estimation,fluid characterization analysis and formation permeability analysis.The test results between WFT and traditional DST show that their functions can be complementary.The influence factors of WFT and the suitable applying conditions for WFT and DST are also discussed.展开更多
A numerical method is developed to investigate the dynamic response of cable-seabed interaction in this paper. The motion of cable is described by the Lumped Parameter Method, while the seabed, unlike the prevailing s...A numerical method is developed to investigate the dynamic response of cable-seabed interaction in this paper. The motion of cable is described by the Lumped Parameter Method, while the seabed, unlike the prevailing simplified model of elastic foundation, is modeled as an irregular continuous rigid surface with rebound and friction existing, and the forces exerted by the seabed consist of normal counterforce and isotropic tangential Coulomb friction resistance. To describe the detailed dynamic response, two coefficients are introduced by analogy with the theory of rigid body collision with friction. The cable-seabed kinematic and dynamic contact conditions are formulated subsequently, and are used to incorporate the seabed effect into the cable dynamics to produce a set of ordinary differential governing equations. In this paper, we employ 4th order Runge-Kutta method to solve these equations. Several simulation cases are presented to illustrate the seabed effect. The results show that friction and impact have a prominent influence on the statics and dynamics of the cable.展开更多
文摘In the last years, the production of optical fibers cables has made possible the development of a range of spectroscopic probes for in situ analysis performing beyond nondestructive tests, environmental monitoring, security investigation, application in radiotherapy for dose monitoring, verification and validation. In this work, a system using an optical fiber cable to electromagnetic signal transmission from a NaI(TI) radiation detector is presented. The innovative device takes advantage mainly of the optical fibers large passband, small signal attenuation and immunity to electromagnetic interference to application for radiation detection systems. The main aim was to simplify the detection system making it to reach areas where the conventional device cannot access due to its lack of mobility and external dimensions. Some tests with this innovative system are presented and the results stimulate the continuity of the researches.
文摘The application of wireline formation tester(WFT)gradually extends in oil-field with the constant improvement of instrument functions.Applications of WFT in oil and gas exploration in Tarim Oilfield,such as formation pressure measurement,are described,and testing efficiency between drill stem testing(DST)and WFT are compared,especially comprised of PVT sampling,hydrocarbon composition estimation,fluid characterization analysis and formation permeability analysis.The test results between WFT and traditional DST show that their functions can be complementary.The influence factors of WFT and the suitable applying conditions for WFT and DST are also discussed.
基金the Shanghai Excellent Young Teachers Program and the Shanghai Leading Academic Discipline Project (No. S30602)
文摘A numerical method is developed to investigate the dynamic response of cable-seabed interaction in this paper. The motion of cable is described by the Lumped Parameter Method, while the seabed, unlike the prevailing simplified model of elastic foundation, is modeled as an irregular continuous rigid surface with rebound and friction existing, and the forces exerted by the seabed consist of normal counterforce and isotropic tangential Coulomb friction resistance. To describe the detailed dynamic response, two coefficients are introduced by analogy with the theory of rigid body collision with friction. The cable-seabed kinematic and dynamic contact conditions are formulated subsequently, and are used to incorporate the seabed effect into the cable dynamics to produce a set of ordinary differential governing equations. In this paper, we employ 4th order Runge-Kutta method to solve these equations. Several simulation cases are presented to illustrate the seabed effect. The results show that friction and impact have a prominent influence on the statics and dynamics of the cable.