Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overh...Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overhead as well as maintaining a certain level of sens- ing performance. However, in existing hierar- chically cooperative spectrum sensing algo- rithms, the robustness problem of the system is seldom considered. In this paper, we pro- pose a reputation-based hierarchically coop- erative spectrum sensing scheme in Cognitive Radio Networks (CRNs). Before spectrum sensing, clusters are grouped based on the location correlation coefficients of Secondary Users (SUs). In the proposed scheme, there are two levels of cooperation, the first one is performed within a cluster and the second one is carried out among clusters. With the reputa- tion mechanism and modified MAJORITY rule in the second level cooperation, the pro- posed scheme can not only relieve the influ- ence of the shadowing, but also eliminate the impact of the PU emulation attack on a rela- tively large scale. Simulation results show that, in the scenarios with deep-shadowing or mul- tiple attacked SUs, our proposed scheme ach- ieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.展开更多
In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditiona...In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditional time spectrum sensing, the SU cannot detect the PU's presence during its transmission, thus increasing interference to the PN. In this work, a novel weighed cooperative bandwidth spectrum sensing method is proposed, which allows multiple SUs to use part of the bandwidth to perform cooperative spectrum sensing throughout the whole frame in order to detect the PU's reappearance in time. The SU's spectrum efficiency is maximized by jointly optimizing sensing bandwidth proportion, number of cooperative SUs and detection probability, subject to the constraints on the SU's interference and the false alarm probability. Simulation results show significant decrease on the interference and improvement on the spectrum efficiency using the proposed weighed cooperative bandwidth spectrum sensing method.展开更多
The majority of existing papers about spectrum sensing have the assumption that secondary users(SUs) are stationary. However,mobility is an essential feature of mobile communications networks. In this paper,the detect...The majority of existing papers about spectrum sensing have the assumption that secondary users(SUs) are stationary. However,mobility is an essential feature of mobile communications networks. In this paper,the detection performance of spectrum sensing by mobile SUs was analyzed. Three performance metrics,i.e.,detection probability,miss detection probability and false alarm probability,were thoroughly investigated. In our analysis,a critical variable was the real-time received primary user signal power by a mobile SU. Its probability distribution and mathematical expectation were analytically derived. Moreover,the three performance metrics in single-node spectrum sensing and multi-node collaborative spectrum sensing systems were also derived. Extensive simulations were performed. The results are consistent with the theoretical analysis. And it is concluded that SU mobility has a significant impact on the detection probability and the miss detection probability,but not on the false alarm probability.展开更多
The Internet of Things (loT) is called the world' s third wave of the information industry. As the core technology of IoT, Cognitive Radio Sensor Networks (CRSN) technology can improve spectrum utilization effici...The Internet of Things (loT) is called the world' s third wave of the information industry. As the core technology of IoT, Cognitive Radio Sensor Networks (CRSN) technology can improve spectrum utilization efficiency and lay a sofid foundation for large-scale application of IoT. Reliable spectrum sensing is a crucial task of the CR. For energy de- tection, threshold will determine the probability of detection (Pd) and the probability of false alarm Pf at the same time. While the threshold increases, Pd and Pf will both decrease. In this paper we focus on the maximum of the difference of Pd and Pf, and try to find out how to determine the threshold with this precondition. Simulation results show that the proposed method can effectively approach the ideal optimal result.展开更多
In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple ...In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple users and one fusion center. The frame structure of cooperative spectrum sensing was divided into multiple transmission time slots and one sensing time slot consisting of local energy detection and cooperative overhead. An optimization problem was formulated to maximize the throughput of CR network, subject to the constraints of both false alarm probability and detection probability. A joint optimization algorithm of sensing time and number of users was proposed to solve this optimization problem with low time complexity. An allocation algorithm of cooperative users was proposed to preferentially allocate the users to the channels with high utilization probability. The simulation results show that the significant improvement on the throughput can be achieved through the proposed joint optimization and allocation algorithms.展开更多
Network structures and human behaviors are considered as two important factors in virus defense currently. However, due to ignorance of network security, normal users usually take simple activities, such as reinstalli...Network structures and human behaviors are considered as two important factors in virus defense currently. However, due to ignorance of network security, normal users usually take simple activities, such as reinstalling computer system, or using the computer recovery system to clear virus. How system recovery influences virus spreading is not taken into consideration currently. In this paper, a new virus propagation model considering the system recovery is proposed first, and then in its steady-state analysis, the virus propagation steady time and steady states are deduced. Experiment results show that models considering system recovery can effectively restrain virus propagation. Furthermore, algorithm with system recovery in BA scale-free network is proposed. Simulation result turns out that target immunization strategy with system recovery works better than traditional ones in BA network.展开更多
Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence predicti...Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence prediction scheme for cognitive radio networks with multiple spectrum bands to decrease the spectrum sensing time and increase the throughput of secondary users. The scheme is based on recent advances in computational learning theory, which has shown that prediction is synonymous with data compression. A Ziv-Lempel data compression algorithm is used to design our spectrum sensing sequence prediction scheme. The spectrum band usage history is used for the prediction in our proposed scheme. Simulation results show that the proposed scheme can reduce the average sensing time and improve the system throughput significantly.展开更多
基金ACKNOWLEDGEMENT This work was partially supported by the Na- tional Natural Science Foundation of China under Grant No. 61071127 and the Science and Technology Department of Zhejiang Pro- vince under Grants No. 2012C01036-1, No. 2011R10035.
文摘Cooperative spectrum sensing in cog- nitive radio is investigated to improve the det- ection performance of Primary User (PU). Meanwhile, cluster-based hierarchical coop- eration is introduced for reducing the overhead as well as maintaining a certain level of sens- ing performance. However, in existing hierar- chically cooperative spectrum sensing algo- rithms, the robustness problem of the system is seldom considered. In this paper, we pro- pose a reputation-based hierarchically coop- erative spectrum sensing scheme in Cognitive Radio Networks (CRNs). Before spectrum sensing, clusters are grouped based on the location correlation coefficients of Secondary Users (SUs). In the proposed scheme, there are two levels of cooperation, the first one is performed within a cluster and the second one is carried out among clusters. With the reputa- tion mechanism and modified MAJORITY rule in the second level cooperation, the pro- posed scheme can not only relieve the influ- ence of the shadowing, but also eliminate the impact of the PU emulation attack on a rela- tively large scale. Simulation results show that, in the scenarios with deep-shadowing or mul- tiple attacked SUs, our proposed scheme ach- ieves a better tradeoff between the system robustness and the energy saving compared with those conventionally cooperative sensing schemes.
基金Project(61471194)supported by the National Natural Science Foundation of ChinaProject(BK20140828)supported by the Natural Science Foundation of Jiangsu Province,ChinaProjects(NS2015088,DUT16RC(3)045)supported by the Fundamental Research Funds for the Central Universities,China
文摘In cognitive radio network(CRN), a secondary user(SU) may utilize the spectrum resource of the primary user(PU) and avoid causing harmful interference to the primary network(PN) via spectrum sensing. In the traditional time spectrum sensing, the SU cannot detect the PU's presence during its transmission, thus increasing interference to the PN. In this work, a novel weighed cooperative bandwidth spectrum sensing method is proposed, which allows multiple SUs to use part of the bandwidth to perform cooperative spectrum sensing throughout the whole frame in order to detect the PU's reappearance in time. The SU's spectrum efficiency is maximized by jointly optimizing sensing bandwidth proportion, number of cooperative SUs and detection probability, subject to the constraints on the SU's interference and the false alarm probability. Simulation results show significant decrease on the interference and improvement on the spectrum efficiency using the proposed weighed cooperative bandwidth spectrum sensing method.
基金supported by National Natural Science Foundation of China under Grand No.61671183
文摘The majority of existing papers about spectrum sensing have the assumption that secondary users(SUs) are stationary. However,mobility is an essential feature of mobile communications networks. In this paper,the detection performance of spectrum sensing by mobile SUs was analyzed. Three performance metrics,i.e.,detection probability,miss detection probability and false alarm probability,were thoroughly investigated. In our analysis,a critical variable was the real-time received primary user signal power by a mobile SU. Its probability distribution and mathematical expectation were analytically derived. Moreover,the three performance metrics in single-node spectrum sensing and multi-node collaborative spectrum sensing systems were also derived. Extensive simulations were performed. The results are consistent with the theoretical analysis. And it is concluded that SU mobility has a significant impact on the detection probability and the miss detection probability,but not on the false alarm probability.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.60971082,60872049,60972073and60871042)the National Key Basic Research Program of China(Grant No.2009CB320400)+1 种基金the National Great Science Specific Project(Grant Nos.2009ZX03003-001,2009ZX03003-011and2010ZX03001003)Chinese Universities Scientific Fund,China
文摘The Internet of Things (loT) is called the world' s third wave of the information industry. As the core technology of IoT, Cognitive Radio Sensor Networks (CRSN) technology can improve spectrum utilization efficiency and lay a sofid foundation for large-scale application of IoT. Reliable spectrum sensing is a crucial task of the CR. For energy de- tection, threshold will determine the probability of detection (Pd) and the probability of false alarm Pf at the same time. While the threshold increases, Pd and Pf will both decrease. In this paper we focus on the maximum of the difference of Pd and Pf, and try to find out how to determine the threshold with this precondition. Simulation results show that the proposed method can effectively approach the ideal optimal result.
基金Project(61471194)supported by the National Natural Science Foundation of ChinaProject(BK20140828)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,China
文摘In order to improve the throughput of cognitive radio(CR), optimization of sensing time and cooperative user allocation for OR-rule cooperative spectrum sensing was investigated in a CR network that includes multiple users and one fusion center. The frame structure of cooperative spectrum sensing was divided into multiple transmission time slots and one sensing time slot consisting of local energy detection and cooperative overhead. An optimization problem was formulated to maximize the throughput of CR network, subject to the constraints of both false alarm probability and detection probability. A joint optimization algorithm of sensing time and number of users was proposed to solve this optimization problem with low time complexity. An allocation algorithm of cooperative users was proposed to preferentially allocate the users to the channels with high utilization probability. The simulation results show that the significant improvement on the throughput can be achieved through the proposed joint optimization and allocation algorithms.
基金supported by China NSF(61572222, 61272405, 61272033, 61272451, 61472121)Fundamental Research Funds for the Central Universities and the open research fund of Zhejiang Provincial Key Lab of Data StorageTransmission Technology, Hangzhou Dianzi University(No. 201301)
文摘Network structures and human behaviors are considered as two important factors in virus defense currently. However, due to ignorance of network security, normal users usually take simple activities, such as reinstalling computer system, or using the computer recovery system to clear virus. How system recovery influences virus spreading is not taken into consideration currently. In this paper, a new virus propagation model considering the system recovery is proposed first, and then in its steady-state analysis, the virus propagation steady time and steady states are deduced. Experiment results show that models considering system recovery can effectively restrain virus propagation. Furthermore, algorithm with system recovery in BA scale-free network is proposed. Simulation result turns out that target immunization strategy with system recovery works better than traditional ones in BA network.
基金Supported by the National Natural Science Foundation of China(No.60832009), the Natural Science Foundation of Beijing (No.4102044) and the National Nature Science Foundation for Young Scholars of China (No.61001115)
文摘Spectrum sensing is one of the key issues in cognitive radio networks. Most of previous work concenates on sensing the spectrum in a single spectrum band. In this paper, we propose a spectrum sensing sequence prediction scheme for cognitive radio networks with multiple spectrum bands to decrease the spectrum sensing time and increase the throughput of secondary users. The scheme is based on recent advances in computational learning theory, which has shown that prediction is synonymous with data compression. A Ziv-Lempel data compression algorithm is used to design our spectrum sensing sequence prediction scheme. The spectrum band usage history is used for the prediction in our proposed scheme. Simulation results show that the proposed scheme can reduce the average sensing time and improve the system throughput significantly.