The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not onl...The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power / energy saving which is replacement of the 6 kV voltage level with 20 kV voltage level. In this line, different urban distribution networks were analyzed using fuzzy techniques for load modeling.展开更多
Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is si...Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.展开更多
The amount of non-technical losses in Brazil is quite elevated, accounting for nearly 5.5% of the country's total generated power. Such losses are asymmetrically distributed within the various regions of the country....The amount of non-technical losses in Brazil is quite elevated, accounting for nearly 5.5% of the country's total generated power. Such losses are asymmetrically distributed within the various regions of the country. Meter tampering (fraud), meter bypassing by regular consumers (theft) and irregular hookups to the network by unlawful consumers are the most predominant forms of irregularities. Part of it which is caused by non-technical losses is being passed on to the consumers through the tariffs they pay. This paper presents an overview of the current situation related to non-technical losses in Brazil involving: quantification, regional asymmetry, nature and stratification, tariff management, and strategies employed to its reduction. Advanced measurement techniques provided by smart-grids can significantly reduce them. It is suggested a potential reduction of 60%. An innovative way of using these indicators in order to identify irregularities is briefly presented in this work.展开更多
文摘The power/energy losses reduction in distribution systems is an important issue during planning and operation, with important technical and economical implications. Thus, the energy losses minimization implies not only the technical improvement of the network, through its renewal with the introduction of the technological innovations in the equipment and circuit components as well as the optimal planning of the design and development of the network, but also requires the use of the methods and software tools to facilitate the operation process. The paper presents a strategy for power / energy saving which is replacement of the 6 kV voltage level with 20 kV voltage level. In this line, different urban distribution networks were analyzed using fuzzy techniques for load modeling.
文摘Reactive power control can control voltage within the proper range from the power network side or from the distribution generation (PV (photovoltaic)) side. Reactive power control from the power network side is simpler because little controlled object apparatus, such as STATCOM, is required. However, it is difficult to optimize the individual voltages of residential consumers because few data have been obtained by the power network side as compared with the power generation side. Energy loss at each residence with PV is different due to the difference in the grid-interconnection condition, such as distribution line impedance when the same operating voltage is set at all residences. Therefore, in this paper, the authors propose an advanced reactive power control method for residential PV systems in order to optimally control the voltage at individual residences so as to minimize energy loss fluctuation. The effectiveness of the proposed reactive power control is demonstrated by numerical simulation.
文摘The amount of non-technical losses in Brazil is quite elevated, accounting for nearly 5.5% of the country's total generated power. Such losses are asymmetrically distributed within the various regions of the country. Meter tampering (fraud), meter bypassing by regular consumers (theft) and irregular hookups to the network by unlawful consumers are the most predominant forms of irregularities. Part of it which is caused by non-technical losses is being passed on to the consumers through the tariffs they pay. This paper presents an overview of the current situation related to non-technical losses in Brazil involving: quantification, regional asymmetry, nature and stratification, tariff management, and strategies employed to its reduction. Advanced measurement techniques provided by smart-grids can significantly reduce them. It is suggested a potential reduction of 60%. An innovative way of using these indicators in order to identify irregularities is briefly presented in this work.