期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于DCT的电网金属材料金相压缩算法
1
作者 董重里 吴开源 +1 位作者 赵卓立 李华佳 《新技术新工艺》 2012年第11期41-43,共3页
为了实现对电网金属材料的定量金相分析,加快存储和传输电网金属材料金相显微组织图像的速度,对基于离散余弦变换(DCT)的JPEG图像压缩算法进行了研究。采用基于DCT的JPEG图像压缩算法,以MATLAB图像处理工具箱为软件平台对系统进行试验... 为了实现对电网金属材料的定量金相分析,加快存储和传输电网金属材料金相显微组织图像的速度,对基于离散余弦变换(DCT)的JPEG图像压缩算法进行了研究。采用基于DCT的JPEG图像压缩算法,以MATLAB图像处理工具箱为软件平台对系统进行试验。试验结果表明,所设计的压缩算法满足定量金相分析图像压缩的设计要求,既可保证有较高的压缩比,又可保证较好的图像质量,大大提高了图像压缩的效率,实现了电网金属材料金相显微组织图像数据的压缩。 展开更多
关键词 图像压缩 DCT变换 电网金属材料 金相组织
下载PDF
含微量H_2S大气对紫铜的腐蚀研究 被引量:8
2
作者 郭军科 卢立秋 +1 位作者 宋卓 于金山 《河北电力技术》 2012年第3期35-37,共3页
针对电网中铜材料腐蚀严重的现状,分别进行H2S体积分数和特定H2S体积分数下作用时间对紫铜的腐蚀试验,并利用电化学交流阻抗、扫描电镜分析腐蚀程度和腐蚀产物类型,认为铜材的腐蚀速率与H2S体积分数、被侵蚀作用时间均呈非线性关系。
关键词 电网材料 硫化氢 大气 腐蚀
下载PDF
Enhanced Field Emission from Printed Carbon Nanotubes by Hard Hairbrush 被引量:2
3
作者 邹儒佳 詹亚歌 +1 位作者 刘洋 薛绍林 《Journal of Donghua University(English Edition)》 EI CAS 2008年第6期612-615,共4页
A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films... A method, the morphology of screen printed carbon nanotube pastes is modified using a hard hairbrush, is presented. In this way, the organic matrix material is preferentially removed. Compared to those untreated films, the turn-on electric field of the treated film decreases from 2.2V/μm to 1.6V/μm, while the total emission current of the treated increases from 0.6mA/cm2 to 3mA/cm2, and uniform emission site density image has also been observed. 展开更多
关键词 carbon nanotube screen printing hard hairbrush field emission
下载PDF
Material Removal Rate Prediction of Electrical Discharge Machining Process Using Artificial Neural Network
4
作者 Azli Yahya Trias Andromeda Ameruddin Baharom Arif Abd Rahim Nazriah Mahmud 《Journal of Mechanics Engineering and Automation》 2011年第4期298-302,共5页
This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data colle... This article presents an Artificial Neural Network (ANN) architecture to model the Electrical Discharge Machining (EDM) process. It is aimed to develop the ANN model using an input-output pattern of raw data collected from an experimental of EDM process, whereas several research objectives have been outlined such as experimenting machining material for selected gap current, identifying machining parameters for ANN variables and selecting appropriate size of data selection. The experimental data (input variables) of copper-electrode and steel-workpiece is based on a selected gap current where pulse on time, pulse off time and sparking frequency have been chosen at optimum value of Material Removal Rate (MRR). In this paper, the result has significantly demonstrated that the ANN model is capable of predicting the MRR with low percentage prediction error when compared with the experimental result. 展开更多
关键词 Electrical discharge machining artificial neural network material removal rate.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部