Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amoun...Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amount of micropores on the I - Sw curve using numerical modeling. The effects of formation water salinity on the electrical resistivity of the rock are discussed. Then the relative magnitudes of the different influencing factors are discussed. The effects of the different factors on the I - Sw curve are analyzed by fitting simulation results. The results show that the connectivity of the void spaces and the amount of micropores have a large effect on the I - S, curve, while the other factors have little effect. The formation water salinity has a large effect on the absolute resistivity values. The non-Archie phenomenon is prevalent, which is remarkable in rocks with low permeability.展开更多
In view of the application importance of resistance network in modern science and technology, this paper presents the basic structure of a three terminals ladder shaped resistance network, for which, to study in- dept...In view of the application importance of resistance network in modern science and technology, this paper presents the basic structure of a three terminals ladder shaped resistance network, for which, to study in- depth the equivalent resistance, carry out network analysis by applying virtual current method and construct a model of two elements three orders differential equation. Based on different marginal conditions, two general adaptive rules for the three-terminal ladder shaped inlet resistance, as well as two ultimate rules for the equiva- lent resistance of three-terminal infinite ladder shaped were given.展开更多
基金This project is sponsored by National Natural Science Foundation of China, No. 40574030.
文摘Based on the percolation network model characterizing reservoir rock's pore structure and fluid characteristics, this paper qualitatively studies the effects of pore size, pore shape, pore connectivity, and the amount of micropores on the I - Sw curve using numerical modeling. The effects of formation water salinity on the electrical resistivity of the rock are discussed. Then the relative magnitudes of the different influencing factors are discussed. The effects of the different factors on the I - Sw curve are analyzed by fitting simulation results. The results show that the connectivity of the void spaces and the amount of micropores have a large effect on the I - S, curve, while the other factors have little effect. The formation water salinity has a large effect on the absolute resistivity values. The non-Archie phenomenon is prevalent, which is remarkable in rocks with low permeability.
基金a project financed by Natural Science Fund of Education Department of Jiangsu Province (02KJB140008)
文摘In view of the application importance of resistance network in modern science and technology, this paper presents the basic structure of a three terminals ladder shaped resistance network, for which, to study in- depth the equivalent resistance, carry out network analysis by applying virtual current method and construct a model of two elements three orders differential equation. Based on different marginal conditions, two general adaptive rules for the three-terminal ladder shaped inlet resistance, as well as two ultimate rules for the equiva- lent resistance of three-terminal infinite ladder shaped were given.