This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found i...This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found in the conventional DC-DC boost converter. The 3-phase grid connected converter with decoupling control give an independent control between active and reactive power using the load current feed-forward. With this technique, the disturbance rejection and the output power quality can be improved. Experiments are conducted with three case studies: 1) a test of the DIDB converter to determine current ripple and voltage gain, 2) a test of the 3-phase grid connected converter to determine DC-link voltage regulation, power factor and total harmonic distortion (THD), and 3) a test of the overall system with a 7.5 kW wind turbine simulator by step and various input wind speeds to determine the output power at the grid side and verify the maximum peak power tracking (MPPT) performance. The results can confirm that the DIDB converter gives lower ripple current and higher voltage gain than the conventional converter. For the grid side, the 3-phase grid connected converter can regulate the DC-link with fast dynamic response to disturbance rejection and low overshoot while complying with the THD standard defined in IEEE 519-1992. In addition, the MPPT controller is able to achieve the maximum energy capture with the various input wind speeds.展开更多
文摘This paper proposes a high performance double-interleaved dual boost (DIDB) technique to solve the problems of high ripple current, large inductor size and the requirement of step-up transformer in many case found in the conventional DC-DC boost converter. The 3-phase grid connected converter with decoupling control give an independent control between active and reactive power using the load current feed-forward. With this technique, the disturbance rejection and the output power quality can be improved. Experiments are conducted with three case studies: 1) a test of the DIDB converter to determine current ripple and voltage gain, 2) a test of the 3-phase grid connected converter to determine DC-link voltage regulation, power factor and total harmonic distortion (THD), and 3) a test of the overall system with a 7.5 kW wind turbine simulator by step and various input wind speeds to determine the output power at the grid side and verify the maximum peak power tracking (MPPT) performance. The results can confirm that the DIDB converter gives lower ripple current and higher voltage gain than the conventional converter. For the grid side, the 3-phase grid connected converter can regulate the DC-link with fast dynamic response to disturbance rejection and low overshoot while complying with the THD standard defined in IEEE 519-1992. In addition, the MPPT controller is able to achieve the maximum energy capture with the various input wind speeds.