Silver nanoparticles prepared by the direct reduction of AgNO3 in aqueous solution were compacted into coins and used as the cathode for the electrocatalytic carboxylation of 1-phenethyl bromide with CO2. The influenc...Silver nanoparticles prepared by the direct reduction of AgNO3 in aqueous solution were compacted into coins and used as the cathode for the electrocatalytic carboxylation of 1-phenethyl bromide with CO2. The influences of the working electrode, charge, current density and temperature were investigated. Under optimized conditions, 98% yield of 2-phenylpropionic acid was obtained. The reaction was performed under very mild conditions and no added catalyst was required in the electrolyte. Yields that varied from moderate to excellent were also achieved with other benzyl bromides. This electrode has good stability and reusability, and the yield and selectivity of 2-phenylpropionic acid could be maintained during reuse for 10 times.展开更多
Electrosynthesis and carbon dioxide(CO_(2))utilization both have gained interest in recent years due to the efforts to alleviate the climate crisis.Significant progress in the field of electrochemical carboxylation us...Electrosynthesis and carbon dioxide(CO_(2))utilization both have gained interest in recent years due to the efforts to alleviate the climate crisis.Significant progress in the field of electrochemical carboxylation using CO_(2) or electrocarboxylation of organic substrates,particularly organohalides and alkenes,has been made in the past decade.Different components of electrocarboxylation experimental setup as well as the understandings of the mechanism play an important role in the success of the carboxylate syntheses.In this review,overview of the proposed mechanisms and the electrochemical setup are described.The significance of electrochemical components,such as the effect of different cathodes,sacrificial anode materials,and other additives,are explained.The examples of electrocarboxylation for both organohalides and olefins are provided.Lastly,the current trends in the field and future directions are discussed.展开更多
Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was ...Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was electrodeposited on the CuxO/Cu electrode by cyclic potential sweeping. The electrocatalytic oxidation behaviors of calcium folinate (CF) at the graphene modified CuxO/Cu electrode were investigated by cyclic voltammetry. A positive scan polarization reverse catalytic voltammetry was used to obtain the pure catalytic oxidation current. The graphene modified CuxO/Cu electrode was served as the electrochemical sensor of CF, a highly sensitivity of 22.0μA.(μmol/μL)^-1cm^-2 was achieved, and the current response was linear with increasing CF concentration in the range of 2.0×10^-7 mol/L to 2.0×10^-5 mol/L, which crossed three orders of magnitude, and the detection limit was found 7.6×10^-5 mol/L (S/N=3). In addition, the proposed sensor was successfully applied in determination of CF in drug sample.展开更多
In this study we used l-allyl-3-methyl imidazole formate ([Amim][COOH]) as ionic liquid to pre-treat the cellulose and determined the rate of polymerization and enzymatic hydrolysis. The results showed that pretreat...In this study we used l-allyl-3-methyl imidazole formate ([Amim][COOH]) as ionic liquid to pre-treat the cellulose and determined the rate of polymerization and enzymatic hydrolysis. The results showed that pretreatment with ([Amim][COOH]) significantly decreased the cellulose polymerization. As the pretreatment temperature went up, the enzymatic hydrolysis rate was first increased and then decreased The maximal enzymatic hydrolysis rate was achieved when the pretreatment temperature was 90 ℃. Under the ultrasonic condition, the initial rate of enzmatic hydrolysis for the ionic liquid-treated cellulose was up to 11.10 gL-1h-1, which was 33% increase compared to the untreated cellulose. Scanning Electronic Microscopy (SEM) and Fourier Transform Infrared-Raman Spectroscop (FT-IR) analysis showed that ionic liquidtreated cellulose started to depolymerize. In addition, the cr3'stallinity of the cellulose was significantly decreased after pretreatment with ionic liquid.展开更多
Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical bi...Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical biosensing applications was examined as electrode material for We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (hIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]^3-/4- solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL^-1 to 100 ng·mL^-1, with a detection limit of 0.9 pg·mL^-1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.展开更多
The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxy...The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were -0.093 V and 0.088 V (vs. Ag/AgCI), respectively. The carboxylic acid groups on the ND surface were reduced to CH2OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.展开更多
基金supported by the National Natural Science Foundation of China(21203066,21373090,21473060)~~
文摘Silver nanoparticles prepared by the direct reduction of AgNO3 in aqueous solution were compacted into coins and used as the cathode for the electrocatalytic carboxylation of 1-phenethyl bromide with CO2. The influences of the working electrode, charge, current density and temperature were investigated. Under optimized conditions, 98% yield of 2-phenylpropionic acid was obtained. The reaction was performed under very mild conditions and no added catalyst was required in the electrolyte. Yields that varied from moderate to excellent were also achieved with other benzyl bromides. This electrode has good stability and reusability, and the yield and selectivity of 2-phenylpropionic acid could be maintained during reuse for 10 times.
基金project is supported by Mahidol University (Basic Research Fund: fiscal year 2021)the Young Scientist Scholarship from Faculty of Science, Mahidol University and Research Fellowship from Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University
文摘Electrosynthesis and carbon dioxide(CO_(2))utilization both have gained interest in recent years due to the efforts to alleviate the climate crisis.Significant progress in the field of electrochemical carboxylation using CO_(2) or electrocarboxylation of organic substrates,particularly organohalides and alkenes,has been made in the past decade.Different components of electrocarboxylation experimental setup as well as the understandings of the mechanism play an important role in the success of the carboxylate syntheses.In this review,overview of the proposed mechanisms and the electrochemical setup are described.The significance of electrochemical components,such as the effect of different cathodes,sacrificial anode materials,and other additives,are explained.The examples of electrocarboxylation for both organohalides and olefins are provided.Lastly,the current trends in the field and future directions are discussed.
文摘Carboxyl graphene modified CuxO/Cu electrode was fabricated. The bare copper electrode was firstly anodic polarized in 1.0 mol/L NaOH solution in order to get CuxO nanoparticles, then the carboxyl graphene (CG) was electrodeposited on the CuxO/Cu electrode by cyclic potential sweeping. The electrocatalytic oxidation behaviors of calcium folinate (CF) at the graphene modified CuxO/Cu electrode were investigated by cyclic voltammetry. A positive scan polarization reverse catalytic voltammetry was used to obtain the pure catalytic oxidation current. The graphene modified CuxO/Cu electrode was served as the electrochemical sensor of CF, a highly sensitivity of 22.0μA.(μmol/μL)^-1cm^-2 was achieved, and the current response was linear with increasing CF concentration in the range of 2.0×10^-7 mol/L to 2.0×10^-5 mol/L, which crossed three orders of magnitude, and the detection limit was found 7.6×10^-5 mol/L (S/N=3). In addition, the proposed sensor was successfully applied in determination of CF in drug sample.
文摘In this study we used l-allyl-3-methyl imidazole formate ([Amim][COOH]) as ionic liquid to pre-treat the cellulose and determined the rate of polymerization and enzymatic hydrolysis. The results showed that pretreatment with ([Amim][COOH]) significantly decreased the cellulose polymerization. As the pretreatment temperature went up, the enzymatic hydrolysis rate was first increased and then decreased The maximal enzymatic hydrolysis rate was achieved when the pretreatment temperature was 90 ℃. Under the ultrasonic condition, the initial rate of enzmatic hydrolysis for the ionic liquid-treated cellulose was up to 11.10 gL-1h-1, which was 33% increase compared to the untreated cellulose. Scanning Electronic Microscopy (SEM) and Fourier Transform Infrared-Raman Spectroscop (FT-IR) analysis showed that ionic liquidtreated cellulose started to depolymerize. In addition, the cr3'stallinity of the cellulose was significantly decreased after pretreatment with ionic liquid.
文摘Recent advances in large area graphene growth have led to many applications in different areas. In the present study, chemical vapor deposited (CVD) monolayer graphene supported on glass substrate electrochemical biosensing applications was examined as electrode material for We report a facile strategy for covalent functionalization of CVD monolayer graphene by electrochemical reduction of carboxyphenyl diazonium salt prepared in situ in acidic aqueous solution. The carboxyphenyl-modified graphene is characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), as well as electrochemical impedance spectroscopy (hIS). We also show that the number of grafted carboxyphenyl groups on the graphene surface can be controlled by the number of cyclic voltammetry (CV) scans used for electrografting. We further present the fabrication and characterization of an immunosensor based on immobilization of ovalbumin antibody on the graphene surface after the activation of the grafted carboxylic groups via EDC/NHS chemistry. The binding between the surface-immobilized antibodies and ovalbumin was then monitored using Faradaic EIS in [Fe(CN)6]^3-/4- solution. The percentage change of charge transfer resistance (Rct) after binding exhibited a linear dependence for ovalbumin concentrations ranging from 1.0 pg·mL^-1 to 100 ng·mL^-1, with a detection limit of 0.9 pg·mL^-1. Our results indicate good sensitivity of the developed functionalized CVD graphene platform, paving the way for using CVD monolayer graphene in a variety of electrochemical biosensing devices.
基金sponsored by the National Natural Science Foundation of China (21075136)
文摘The electrochemical behavior of nanodiamond (ND) film functionalized with carboxylic acid groups was studied systemati- cally on a glassy carbon (GC) electrode. One stable redox couple corresponding to the carboxylic acid group was observed. At the scan rate of 0.1 V/s, the cathodic and anodic peak potentials were -0.093 V and 0.088 V (vs. Ag/AgCI), respectively. The carboxylic acid groups on the ND surface were reduced to CH2OH via a four electron redox process. The ND film modified electrode showed favorable electrocatalytic behavior toward the oxidation as well as the reduction of biomolecules, such as tryptophan and nicotinamide adenine dinucleotide.