The coordination polymer poly(nickel-ethylenetetrathiolate) (poly(Ni-ett)), formed by nickel(Ⅱ) and 1,1,2,2-ethenetetrathiolate (ett), is the most promising N-type organic thermoelectric material ever repor...The coordination polymer poly(nickel-ethylenetetrathiolate) (poly(Ni-ett)), formed by nickel(Ⅱ) and 1,1,2,2-ethenetetrathiolate (ett), is the most promising N-type organic thermoelectric material ever reported; it is synthesized via potentiostatic deposition, and the effect of different applied potentials on the optimal performance of the polymers is investigated. The optimal thermoelectric property ofpoly(Ni-ett) synthesized at 0.6 V is remarkably greater than that of the polymers synthesized at 1 and 1.6 V, exhibiting a maximum power factor of up to 131.6μW/mK2 at 360 K. Furthermore, the structure-property correlation ofpoly(Ni-ett) is also extensively investigated. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the larger size of crystalline domains and the higher oxidation state of poly(Ni-ett) synthesized at 0.6 V possibly results in the higher bulk mobility and carrier concentration in the polymer chains, respectively, accounting for the enhanced power factor.展开更多
A highly porous nickel-film electrode with satisfactory mechanical strength was prepared by a facile vertical template-assisted composite electrodeposition method using polystyrene(PS) microspheres templates, with the...A highly porous nickel-film electrode with satisfactory mechanical strength was prepared by a facile vertical template-assisted composite electrodeposition method using polystyrene(PS) microspheres templates, with the aim of improving the electrocatalytic activity for the hydrogen-evolution reaction(HER). During the composite electrodeposition process, the hydrophobic PS microspheres were highly dispersed in the electrolyte with the help of a surfactant, and then co-deposited with Ni to form the film electrode. After removing the PS templates by annealing, a porous Ni film containing large amount of uniformly dispersed pores with narrow size distribution was obtained, and then applied as the electrode for the HER in an alkaline medium. As evidenced by the electrochemical analysis, the porous Ni film electrode exhibits higher catalytic activity as compared to a dense Ni film electrode and is superior to a Ni/Ru O2/Ce O2 commercial electrode. The effect of temperature on the catalytic properties of the porous Ni film electrode was also investigated; the activation energy was calculated as 17.26 k J/mol. The enhanced activity toward the HER was attributed to the improved electrochemical surface area and mass transportation facilitated by the high porosity of the synthesized Ni film electrode.展开更多
In this paper,a 64 mm×64 mm matrix polymer solar cell(PSC) was fabricated by air-brush spray deposition.Although the open-circuit voltage(Voc) and the fill factor(FF) both need to be improved,the efficiency of ma...In this paper,a 64 mm×64 mm matrix polymer solar cell(PSC) was fabricated by air-brush spray deposition.Although the open-circuit voltage(Voc) and the fill factor(FF) both need to be improved,the efficiency of matrix PSCs still reaches about 1.82%,and especially the current density achieves nearly 20 m A/cm2.The results verify that air-brush spray deposition is a suitable method to prepare large area PSC devices,and the process we use in this paper can be easily transplanted to roll-to-roll production.展开更多
To achieve a dopamine (DA) response with high sensitivity and high signal-to-noise ratio (S/N) with a patch-clamp system, polypyrrole/graphene (PPy/GR) nanocomposites were steadily electrodeposited by an electro...To achieve a dopamine (DA) response with high sensitivity and high signal-to-noise ratio (S/N) with a patch-clamp system, polypyrrole/graphene (PPy/GR) nanocomposites were steadily electrodeposited by an electrochemical method on a planar mi- croelectrode array (pMEA) fabricated by a standard micromachining process. The electrodeposition process was carried out by chronopotentimetry measurement scanning from 0.1 to 0.8 C/cm2 at the current of 2 mA; 0.5 C/cm2 was found to be optimal. The pMEA modified by PPy/GR at the 0.5 C/cm2 exhibits remarkable properties; for instance, the standard deviation (SD) de- creases from 8.4614×10-al to 5.62×10 11 A, reduced by 33.52%, and the sensitivity increases from 2566.88 to 76114.65 gAmMcm2 , 29.65 times higher than the bare Pt (platinum). A good linear relationship between the current and DA concentra- tion in the range of 0.30 to 61.71 grn was obtained, with a correlation coefficient of 0.997. The sensor is meaningful for neuro- science research and the treatment of neurological diseases.展开更多
基金supported by the National Basic Research Program of China (2013CB632506)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB12000000)+1 种基金Key Project of National Natural Science Foundation of China (51336009)National Natural Science Foundation of China (21290191, 21333011)
文摘The coordination polymer poly(nickel-ethylenetetrathiolate) (poly(Ni-ett)), formed by nickel(Ⅱ) and 1,1,2,2-ethenetetrathiolate (ett), is the most promising N-type organic thermoelectric material ever reported; it is synthesized via potentiostatic deposition, and the effect of different applied potentials on the optimal performance of the polymers is investigated. The optimal thermoelectric property ofpoly(Ni-ett) synthesized at 0.6 V is remarkably greater than that of the polymers synthesized at 1 and 1.6 V, exhibiting a maximum power factor of up to 131.6μW/mK2 at 360 K. Furthermore, the structure-property correlation ofpoly(Ni-ett) is also extensively investigated. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the larger size of crystalline domains and the higher oxidation state of poly(Ni-ett) synthesized at 0.6 V possibly results in the higher bulk mobility and carrier concentration in the polymer chains, respectively, accounting for the enhanced power factor.
基金supported by the National Natural Science Foundation of China(51125007)the National Key Technology R&D Program of China(2009BAE87B00)
文摘A highly porous nickel-film electrode with satisfactory mechanical strength was prepared by a facile vertical template-assisted composite electrodeposition method using polystyrene(PS) microspheres templates, with the aim of improving the electrocatalytic activity for the hydrogen-evolution reaction(HER). During the composite electrodeposition process, the hydrophobic PS microspheres were highly dispersed in the electrolyte with the help of a surfactant, and then co-deposited with Ni to form the film electrode. After removing the PS templates by annealing, a porous Ni film containing large amount of uniformly dispersed pores with narrow size distribution was obtained, and then applied as the electrode for the HER in an alkaline medium. As evidenced by the electrochemical analysis, the porous Ni film electrode exhibits higher catalytic activity as compared to a dense Ni film electrode and is superior to a Ni/Ru O2/Ce O2 commercial electrode. The effect of temperature on the catalytic properties of the porous Ni film electrode was also investigated; the activation energy was calculated as 17.26 k J/mol. The enhanced activity toward the HER was attributed to the improved electrochemical surface area and mass transportation facilitated by the high porosity of the synthesized Ni film electrode.
基金supported by the National Natural Science Foundation of China(No.61274063)
文摘In this paper,a 64 mm×64 mm matrix polymer solar cell(PSC) was fabricated by air-brush spray deposition.Although the open-circuit voltage(Voc) and the fill factor(FF) both need to be improved,the efficiency of matrix PSCs still reaches about 1.82%,and especially the current density achieves nearly 20 m A/cm2.The results verify that air-brush spray deposition is a suitable method to prepare large area PSC devices,and the process we use in this paper can be easily transplanted to roll-to-roll production.
基金supported by the National Natural Science Foundation of China(Grant Nos.61125105,61101048,61271147,and 61002037)National Basic Research Program of China("973" Program)(Grant Nos.2011CB933202,2014CB744605)
文摘To achieve a dopamine (DA) response with high sensitivity and high signal-to-noise ratio (S/N) with a patch-clamp system, polypyrrole/graphene (PPy/GR) nanocomposites were steadily electrodeposited by an electrochemical method on a planar mi- croelectrode array (pMEA) fabricated by a standard micromachining process. The electrodeposition process was carried out by chronopotentimetry measurement scanning from 0.1 to 0.8 C/cm2 at the current of 2 mA; 0.5 C/cm2 was found to be optimal. The pMEA modified by PPy/GR at the 0.5 C/cm2 exhibits remarkable properties; for instance, the standard deviation (SD) de- creases from 8.4614×10-al to 5.62×10 11 A, reduced by 33.52%, and the sensitivity increases from 2566.88 to 76114.65 gAmMcm2 , 29.65 times higher than the bare Pt (platinum). A good linear relationship between the current and DA concentra- tion in the range of 0.30 to 61.71 grn was obtained, with a correlation coefficient of 0.997. The sensor is meaningful for neuro- science research and the treatment of neurological diseases.