Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highligh...Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above.展开更多
Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical...Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage.展开更多
Electrochemical treatment is a popular and efficient method for improving the photoelectrochemical performance of water‐splitting photoelectrodes.In our previous study,the electrochemical activation of Mo‐doped BiVO...Electrochemical treatment is a popular and efficient method for improving the photoelectrochemical performance of water‐splitting photoelectrodes.In our previous study,the electrochemical activation of Mo‐doped BiVO_(4) electrodes was ascribed to the removal of MoO_(x) segregations,which are considered to be surface recombination centers for photoinduced electrons and holes.However,this proposed mechanism cannot explain why activated Mo‐doped BiVO_(4) electrodes gradually lose their activity when exposed to air.In this study,based on various characterizations,it is suggested that electrochemical treatment not only removes partial MoO_(x) segregations but also initiates the formation of H_(y)MoO_(x) surface defects,which provide charge transfer channels for photogenerated holes.The charge separation of the Mo‐doped BiVO_(4) electrode was significantly enhanced by these charge transfer channels.This study offers a new insight into the electrochemical activation of Mo‐doped BiVO_(4) photoanodes,and the new concept of surface charge transfer channels,a long overlooked factor,will be valuable for the development of other(photo)electrocatalytic systems.展开更多
The potential energy landscape of the neutral Ni_(2)(CO)_(5) complex was re-examined.A new C_(2v) structure with double bridging carbonyls is found to compete with the previously proposed triply carbonyl-bridged D_(3h...The potential energy landscape of the neutral Ni_(2)(CO)_(5) complex was re-examined.A new C_(2v) structure with double bridging carbonyls is found to compete with the previously proposed triply carbonyl-bridged D_(3h) isomer for the global minimum of Ni_(2)(CO)_(5).Despite that the tri-bridged isomer possesses the more favored(18,18)configuration,where both metal centers satisfy the 18-electron rule,the neutral Ni_(2)(CO)_(5) complex prefers the di-bridged geometry with(18,16)configuration.The isomerization energy decomposition analysis reveals that the structural preference is a consequence of the maximization of electrostatic and orbital interactions.展开更多
Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting dem...Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.展开更多
We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negat...We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.展开更多
Normally, it is difficult to directly measure the bandgaps of perovskite based on methylammonium(MA) or formamidinium(FA) at high temperatures due to material decomposition. We prevent the decomposition by keeping the...Normally, it is difficult to directly measure the bandgaps of perovskite based on methylammonium(MA) or formamidinium(FA) at high temperatures due to material decomposition. We prevent the decomposition by keeping the synthesized perovskite films(MAPbI_3 and MAPbI_3) in organic iodide vapors, then measure the in-situ resistance of the films at varied temperatures, and further evaluate the bandgaps of these two materials. The evaluated bandgaps are consistent with the results from ultraviolet-visible(UV-vis) absorption spectrum. The bandgap of MAPbI_3 decreases with temperature above 95 ℃, whereas that of FAPbI_3 first increases with temperature from 95 ℃ to 107 ℃ and then decreases with temperature above 107 ℃.展开更多
A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-Ti...A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.展开更多
基金supported by the National Natural Science Foundation of China(21575134,21633008,21773224)National Key R&D Program of China(2016YFA0203200)K.C.Wong Education Foundation~~
文摘Catalysts play decisive roles in determining the energy conversion efficiencies of energy devices.Up to now,various types of nanostructured materials have been studied as advanced electrocatalysts.This review highlights the application of one‐dimensional(1D)metal electrocatalysts in energy conversion,focusing on two important reaction systems-direct methanol fuel cells and water splitting.In this review,we first give a broad introduction of electrochemical energy conversion.In the second section,we summarize the recent significant advances in the area of 1D metal nanostructured electrocatalysts for the electrochemical reactions involved in fuel cells and water splitting systems,including the oxygen reduction reaction,methanol oxidation reaction,hydrogen evolution reaction,and oxygen evolution reaction.Finally,based on the current studies on 1D nanostructures for energy electrocatalysis,we present a brief outlook on the research trend in 1D nanoelectrocatalysts for the two clean electrochemical energy conversion systems mentioned above.
基金Project(2011FJ1005)supported by the Major Provincial Science and Technology Program of Hunan Province,ChinaProject(2010qzzd0101)supported by the Central College on the 2010 Operational Costs of Basic Research Program,China
文摘Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte (CPE) modified with CeO2, La2O3 and Y2O3 nano-rare earth oxides was prepared by phase inversion technique. Physical and chemical properties of the modified CPEs were studied by SEM, TG-DSC and electrochemical methods. The results show that the CPE modified with 10% La2O3 (mass fraction) has the best practical applicability, which indicates that the thermal and electrochemical stability can reach over 400 ℃ and 4.5 V, respectively, and temperature dependence of ionic conductivity follows Vogel-Tamman-Fulcher (VTF) relationship and ionic conductivity at room temperature is up to 3.3 mS/cm. The interfacial resistance Ri reaches a stable value about 557 Ω after 6 d storage.
文摘Electrochemical treatment is a popular and efficient method for improving the photoelectrochemical performance of water‐splitting photoelectrodes.In our previous study,the electrochemical activation of Mo‐doped BiVO_(4) electrodes was ascribed to the removal of MoO_(x) segregations,which are considered to be surface recombination centers for photoinduced electrons and holes.However,this proposed mechanism cannot explain why activated Mo‐doped BiVO_(4) electrodes gradually lose their activity when exposed to air.In this study,based on various characterizations,it is suggested that electrochemical treatment not only removes partial MoO_(x) segregations but also initiates the formation of H_(y)MoO_(x) surface defects,which provide charge transfer channels for photogenerated holes.The charge separation of the Mo‐doped BiVO_(4) electrode was significantly enhanced by these charge transfer channels.This study offers a new insight into the electrochemical activation of Mo‐doped BiVO_(4) photoanodes,and the new concept of surface charge transfer channels,a long overlooked factor,will be valuable for the development of other(photo)electrocatalytic systems.
基金supported by the National Natural Science Foundation of China(No.21571119 and No.21603130)the Shanxi Province Science Foundation for Youths(No.201901D211395)+1 种基金the 1331 Engineering of Shanxi Provincethe Start-up fund from Shanxi Normal University。
文摘The potential energy landscape of the neutral Ni_(2)(CO)_(5) complex was re-examined.A new C_(2v) structure with double bridging carbonyls is found to compete with the previously proposed triply carbonyl-bridged D_(3h) isomer for the global minimum of Ni_(2)(CO)_(5).Despite that the tri-bridged isomer possesses the more favored(18,18)configuration,where both metal centers satisfy the 18-electron rule,the neutral Ni_(2)(CO)_(5) complex prefers the di-bridged geometry with(18,16)configuration.The isomerization energy decomposition analysis reveals that the structural preference is a consequence of the maximization of electrostatic and orbital interactions.
文摘Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.
基金supported by Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China(Grant No.11171028)
文摘We study a class of semilinear SchrSdinger equation with electromagnetic fields and the nonlinearity term involving critical growth. We assume that the potential of the equation includes a parameter A and can be negative in some domain. Moreover, the potential behaves like potential well when the parameter A is large. Using variational methods combining Nehari methods, we prove that the equation has a least energy solution which, as the parameter A becomes large, localized near the bottom of the potential well. Our result is an extension of the corresponding result for the SchrSdinger equation which involves critical growth but does not involve electromagnetic fields.
基金supported by the National Natural Science Foundation of China(No.61504097)the Natural Science Foundation of Tianjin(No.14JCYBJC42800)+1 种基金the Scientific Developing Foundation of Tianjin Education Commission(No.20140423)the National Key Scientific Instrument and Equipment Development Project(No.2014YQ120351)
文摘Normally, it is difficult to directly measure the bandgaps of perovskite based on methylammonium(MA) or formamidinium(FA) at high temperatures due to material decomposition. We prevent the decomposition by keeping the synthesized perovskite films(MAPbI_3 and MAPbI_3) in organic iodide vapors, then measure the in-situ resistance of the films at varied temperatures, and further evaluate the bandgaps of these two materials. The evaluated bandgaps are consistent with the results from ultraviolet-visible(UV-vis) absorption spectrum. The bandgap of MAPbI_3 decreases with temperature above 95 ℃, whereas that of FAPbI_3 first increases with temperature from 95 ℃ to 107 ℃ and then decreases with temperature above 107 ℃.
基金supported by the National High Technology Research and Development Program of China (2009AA03Z217)the National Natural Science Foundation of China (90922028 and 51002053)
文摘A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.