The earthquake resistance of transmission tower has been often discussed from the viewpoint of reinforcing the foundation of steel tower, but there are also few studies considering the damping characteristics of the t...The earthquake resistance of transmission tower has been often discussed from the viewpoint of reinforcing the foundation of steel tower, but there are also few studies considering the damping characteristics of the tower. This paper focuses on the viscous damper which has been adopted for seismic reinforcement of bridges in recent years. The purpose of this study is to improve the seismic performance of steel tower by giving the high damping to the tower. We construct a single tower model considering the influence of transmission line, and then simulate the vibration characteristics and seismic behavior of the tower by the eigenvalue analysis and the dynamic response analysis. The results show that the transmission tower with viscous damper can reduce its own response effectively and drastically. This research concludes that it is necessary to consider the extreme increase of steel tower's response depending on the seismic wave and the collapse of steel tower can be avoided by using the optimum damper in the design of the transmission tower.展开更多
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integrati...This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.展开更多
Equipped with millions of sensors and smart meters in smart gird,a reliable and resilient wireless communication technology is badly needed.Mobile networks are among the major energy communication networks which contr...Equipped with millions of sensors and smart meters in smart gird,a reliable and resilient wireless communication technology is badly needed.Mobile networks are among the major energy communication networks which contribute to global energy consumption increase rapidly.As one of core technologies of smart grid employing mobile networks,Demand Response(DR) helps improving efficiency,reliability and security for electric power grid infrastructure.Security of DR events is one of the most important issues in DR.However,the security requirements of different DR events are dynamic for variousactual demands.To address this,an event-oriented dynamic security service mechanism is proposed for DR.Three kinds of security services including security access service,security communication service and security analysis service for DR event are composited dynamically by the fine-grained sub services.An experiment prototype of the network of State Grid Corporation of China(SGCC) is established.Experiment and evaluations shows the feasibility and effectiveness of the proposed scheme in smart grid employing mobile network.展开更多
In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cel...In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination.展开更多
Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetect...Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.展开更多
Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report...Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.展开更多
A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ...A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometry (UV-vis). The AgBr/ZnO hybrid nanophotocatalyst has excellent photocatalytic activity for photodegradation of methyl orange (MO) under sunlight irradiation. The MO degradation efficiency for AgBr/ZnO is about 98% after 1 hour under sunlight irradiation. These results suggested that AgBr/ZnO is a promising candidate for the development of highly efficient sunlight photocatalysts. In addition, the photocatalytic mechanism of AgBr/ZnO under sunlight irradiation is illustrated and discussed.展开更多
文摘The earthquake resistance of transmission tower has been often discussed from the viewpoint of reinforcing the foundation of steel tower, but there are also few studies considering the damping characteristics of the tower. This paper focuses on the viscous damper which has been adopted for seismic reinforcement of bridges in recent years. The purpose of this study is to improve the seismic performance of steel tower by giving the high damping to the tower. We construct a single tower model considering the influence of transmission line, and then simulate the vibration characteristics and seismic behavior of the tower by the eigenvalue analysis and the dynamic response analysis. The results show that the transmission tower with viscous damper can reduce its own response effectively and drastically. This research concludes that it is necessary to consider the extreme increase of steel tower's response depending on the seismic wave and the collapse of steel tower can be avoided by using the optimum damper in the design of the transmission tower.
文摘This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.
基金supported by National Natural Science Foundation of China(Grant No. 61401273 and 61431008)Doctoral Scientific Fund Project of the Ministry of Education of China(No.20130073130006)JSPS KAKENHI Grant Number 15K15976,26730056,JSPS A3 Foresight Program
文摘Equipped with millions of sensors and smart meters in smart gird,a reliable and resilient wireless communication technology is badly needed.Mobile networks are among the major energy communication networks which contribute to global energy consumption increase rapidly.As one of core technologies of smart grid employing mobile networks,Demand Response(DR) helps improving efficiency,reliability and security for electric power grid infrastructure.Security of DR events is one of the most important issues in DR.However,the security requirements of different DR events are dynamic for variousactual demands.To address this,an event-oriented dynamic security service mechanism is proposed for DR.Three kinds of security services including security access service,security communication service and security analysis service for DR event are composited dynamically by the fine-grained sub services.An experiment prototype of the network of State Grid Corporation of China(SGCC) is established.Experiment and evaluations shows the feasibility and effectiveness of the proposed scheme in smart grid employing mobile network.
文摘In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination.
基金funded by the National Natural Science Foundation of China (U1432249)the National Key R&D Program of China (2017YFA0205002)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology and Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)
文摘Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.
基金supported by the National Natural Science Foundation of China (21875212)the Key Program of National Natural Science Foundation (51632008)+2 种基金the Major R&D Plan of Zhejiang Natural Science Foundation (LD18E020001)the National Key Research and Development Program (2016YFA0200204)the Fundamental Research Funds for the Central Universities。
文摘Smart proton conductive metal-organic framework(MOF) membranes with dynamic remote control over proton conduction show high potential for use in advanced applications, such as sensors and bioprocesses. Here, we report a photoswitchable proton conductive ZIF-8 membrane by coencapsulating polystyrene sulfonate and graphene quantum dots into a ZIF-8 matrix(GQDs-PSS@ZIF-8) via a solidconfined conversion process. The proton conductivity of the GQDs-PSS@ZIF-8 membrane is 6.3 times higher than that of pristine ZIF-8 and can be reversibly switched by light due to photoluminescence quenching and the photothermal conversion effect, which converts light into heat. The local increase in temperature allows water molecules to escape from the porous channels, which cuts off the proton transport pathways and results in a decrease in proton conductivity. The proton conductivity is restored when the light is off owing to regaining water molecules, which act as proton carriers, from the surroundings. The GQDs-PSS@ZIF-8 membrane responds efficiently to light and exhibits an ON/OFF ratio of 12.8. This photogated proton conduction in MOFs has potential for the development and application of MOF-based protonic solids in advanced photoelectric devices.
基金supported by the National Natural Science Foundation of China (50972063, 51172115)the Key Natural Science Foundation of Shandong Province (ZR2011EMZ001)+4 种基金the Science and Research Development Plan of Education Department in Shandong Province (J06A02)the Tackling Key Program of Science and Technology in Shandong Province (2006GG2203014)the Application Foundation Research Program of Qingdao under Grant No. 09-1-3-27-jcalso the Key Technology Major Research Plan in Qingdao (09-1-4-21-gx)Theinnovation fund for small and medium-sized enterprises of Ministry of Science and Technology (10C26213712086)
文摘A novel high-effective sunlight-induced AgBr/ZnO hybrid nanophotocatalyst has been synthesized and it was characterized by different techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometry (UV-vis). The AgBr/ZnO hybrid nanophotocatalyst has excellent photocatalytic activity for photodegradation of methyl orange (MO) under sunlight irradiation. The MO degradation efficiency for AgBr/ZnO is about 98% after 1 hour under sunlight irradiation. These results suggested that AgBr/ZnO is a promising candidate for the development of highly efficient sunlight photocatalysts. In addition, the photocatalytic mechanism of AgBr/ZnO under sunlight irradiation is illustrated and discussed.