This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the mode...This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.展开更多
Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were inves...Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was considered the best one. Experimental results showed that the effects of compaction on the streaming potential measurement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.展开更多
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model ge...We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.展开更多
In this paper we study the bilayer quantum Hall (QH) effect on a noncommutative phase space (NCPS). By using perturbation theory, we calculate the energy spectrum, eigenfunction, Hall current, and Hall conductivit...In this paper we study the bilayer quantum Hall (QH) effect on a noncommutative phase space (NCPS). By using perturbation theory, we calculate the energy spectrum, eigenfunction, Hall current, and Hall conductivity of the bilayer QH system, and express them in terms of noncommutative parameters θ and θ^-, respectively. In our calculation, we assume that these parameters vary from laver to laver.展开更多
We have measured the deep energy level of the InP: Fe which is semi -insulator through the method of OTCS. The effect of light intensity on OTCS measurement is mainly discussed. There are electron trap of E_T =0.34 eV...We have measured the deep energy level of the InP: Fe which is semi -insulator through the method of OTCS. The effect of light intensity on OTCS measurement is mainly discussed. There are electron trap of E_T =0.34 eV and hole trap of E_T = 1.13 eV in InP: Fe under the strong light and low temperature. The location of the OTCS peak of electron trap (E_T = 0.34 eV) moves towards the direction of high temperaturer, when the light intensity was increased, E_T is different under different light intensity. It is corrected in terms of theory that the stuff ratio of the deep energy level is affected by the light intensity. The experiments show that the error is decreased greatly with the correction.展开更多
The main objective of this paper is to show an overview analysis of market power issues.Market power reflects the scarcity of power supply.It is the ability of a particular seller or group of sellers to maintain price...The main objective of this paper is to show an overview analysis of market power issues.Market power reflects the scarcity of power supply.It is the ability of a particular seller or group of sellers to maintain prices profitably above competitive levels for a significant period of time.Because the electric power system has its own characteristics that are different to other economic systems,both physical factors and economic factors of power system are key elements on this definition.We study some cases here,including different line limit levels,load levels and bid strategy through a market model based on OPF (optimal power flow) with a decommitment algorithm.展开更多
This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The propo...This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the grid through a back-to-back AC-DC-AC PWM (pulse width modulation) converter. The RSC (rotor side converter) is controlled in such a way to extract a maximum power, for a wide range of wind speed. The GSC (grid side converter) is controlled in order to filter harmonic currents of a nonlinear load coupled at the PCC (point of common coupling) and ensure smooth DC bus voltage. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed and power quality improvement is achieved.展开更多
In a smart grid, electric loads are supplied by various DC (direct current) power sources, such as solar cells or batteries. On the other hand, traditional AC (alternating current) loads like a directly connected ...In a smart grid, electric loads are supplied by various DC (direct current) power sources, such as solar cells or batteries. On the other hand, traditional AC (alternating current) loads like a directly connected induction motors will also be used. In the circumstances, a smart power conversion unit is one of key components, which can integrate these DC or AC apparatus and trade power among them. Authors have developed an integrated power converter based on a well-known circuit topology of flying capacitor multilevel converter. This paper describes the detail of the circuit topology and its characteristics depending on designed parameters. The achieved power quality is also verified by simulation study.展开更多
Frequency and temperature dependent dielectric dispersion of 20PbF2?20TeO2?(60?x)B2O3?xEu2O3(x=0 to 2.5, mole fraction, %) glasses prepared by the melt?quenching technique were investigated in the frequency r...Frequency and temperature dependent dielectric dispersion of 20PbF2?20TeO2?(60?x)B2O3?xEu2O3(x=0 to 2.5, mole fraction, %) glasses prepared by the melt?quenching technique were investigated in the frequency range 1 Hz?10 MHz and temperature range 313?773 K. Dielectric relaxation dynamics was analyzed based on the electric modulus behavior. Dielectric losses (tanδ) are found to be negligibly small in the temperature range 313?523 K, proving good thermal stability of the glasses. The present Eu2O3-doped oxyfluroborate glasses showed low dielectric loss at higher frequency and lower temperature, proving their suitability for nonlinear optical materials.展开更多
Biomass plants often struggle to capture flow measurements reliably. High amounts of dry solids and fats complicate the measurement with an MID (Magnetic-Inductive) flowmeter and make it susceptible to faults. To ov...Biomass plants often struggle to capture flow measurements reliably. High amounts of dry solids and fats complicate the measurement with an MID (Magnetic-Inductive) flowmeter and make it susceptible to faults. To overcome this impediment, the waste water treatment plant in Innsbruck, Austria, relies on electromagnetic pulsed AC (Alternating Current) flowmeters. Compared to pulsed DC (Direct Current) devices, AC devices are able to build up magnetic fields that are ten times stronger. Equipped with this capability, the Sitrans Transmag 2 is able to guarantee a constant and also high measuring accuracy, zero point stability and signal strength regardless of impurities in the medium or fluctuations in the magnetic field.展开更多
This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, ...This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. This study indicates that the connection points have hydraulic potential that can be used for power generation throughout the year. It also demonstrates that the pico-hydraulic turbine can be usefully employed for power generation from sewage flowing in the pipe at the connection points.展开更多
The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in ...The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in addition to regulate the system bus voltage. This paper presents performance analysis of Unified Power Flow Controller based on two axis theory. Based on this analysis, a new Artificial Neural Network (ANN) based controller has been proposed to improve the system performance. The controller rules are structured depending upon the relationship between series inserted voltage and the desired changes in real/reactive power flow in the power system. The effects of different controllers along with parameters of series transformer and transmission line have been investigated through developed control block model in SIMULINK tool box of MATLAB. The effectiveness of the proposed scheme is demonstrated by case studies.展开更多
In 2006, except the basic improvement on HL-2A tokamak control system, data acquisition and processing system, a series of research activities have been developed in computer and control division. They include the con...In 2006, except the basic improvement on HL-2A tokamak control system, data acquisition and processing system, a series of research activities have been developed in computer and control division. They include the construction of the high performance computer (HPC) system, the plasma configuration real-time reconstruction with EFIT code, the immigration of plasma simulation codes, the improvement of the poloidal field control system with circulating current, the design of the new data acquiring device with higher anti-disturbing power, the new software on soft X-ray spectrum measurement providing the multi-channel Te evolution, the upgrade to the HL-2A data storage system and experimental net. On the other hand, according to the arrangement of HL-2A modification project, a series of designs such as new plasma configuration, poloidal field coils distribution and plasma shape and position control system are on the processing.展开更多
The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitivel...The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges.展开更多
The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that...The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that can operate connected to the public grid or autonomously where it regulates the site's voltage and frequency. In this paper, the potential of the microgrid in improving power quality issues of the site, specifically harmonic distortions, is demonstrated. Results show that flexible AC distribution interfacing system devices were able to compensate voltage harmonics when the microgrid was operating connected to the public grid and when operating autonomously. Other tests such as short-circuit, synchronization and blackstart were also conducted. The improvement in power quality and positive results of the other tests demonstrate that a self-supporting, reliable and efficient operation of the microgrid can be achieved.展开更多
For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivi...For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.展开更多
Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for investigating diffusion properties in equilibrium systems is discussed. With this method,...Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for investigating diffusion properties in equilibrium systems is discussed. With this method, we demonstrate that for one-dimensional systems, using the indices of particles as the space variable, which has been accepted as a convention, may lead to misleading conclusions. We then show that though in one-dimensional systems there is no general connection between energy diffusion and heat conduction, however, a general connection between heat diffusion and heat conduction may exist. Relaxation behavior of local energy current fluctuations and that of local heat current fluctuations are also studied. We find that they are significantly different,though the global energy current equals the globe heat current.展开更多
Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reac...Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.展开更多
Many researches on critical nozzles have been performed to accurately measure the mass flow rate of gas flow,and to standardize the performance as a flow meter.Recently,much interest is being paid on the measurement o...Many researches on critical nozzles have been performed to accurately measure the mass flow rate of gas flow,and to standardize the performance as a flow meter.Recently,much interest is being paid on the measurement of very small mass flow rate in industry fields such as MEMS applications.However,the design and performance data of the critical nozzles obtained so far have been applied mainly to the critical nozzles with comparatively large diameters,and the works available on miniature critical nozzles are lacking.In the present study,a computational fluid dynamics method has been applied to investigate the influence of the diffuser angle on discharge coefficient of the miniature critical nozzles.In computations,the throat diameter of critical nozzle is varied from 0.2 mm to 5.0 mm and the diffuser angle is changed from 2 deg to 8 deg.The computational results are validated with some experimental data available.The results show that the present computational results predict appropriately the discharge coefficient of the gas flows through miniature critical nozzles.It is known that the discharge coefficient is considerably influenced by the diffuser angle,as the throat diameter of nozzle becomes small below a certain value.This implies that the miniature critical nozzles should be carefully designed.展开更多
基金Project (No. 2004035223) supported by the Postdoctoral ScienceFoundation of China
文摘This paper presents a general analytical model of flexible isolation system for application to the installation of high-speed machines and lightweight structures. Piezoelectric stack actuators are employed in the model to achieve vibration control of flexible structures, and dynamic characteristics are also investigated. Mobility technique is used to derive the governing equations of the system. The power flow transmitted into the foundation is solved and considered as a cost function to achieve optimal control of vibration isolation. Some numerical simulations revealed that the analytical model is effective as piezoelectric stack actuators can achieve substantial vibration attenuation by selecting proper value of the input voltage.
基金the National Natural Science Foundation of China (No.29976031), the Collaboration Project Foundation of Tianjin University and Nankal University, and the Key Project Foundation of Tianjin (No.0331810112).
文摘Surface charge characteristics of a membrane can be determined by the streaming potential. In order to obtain more accurate streaming potential value during the measurement, four measurement operation modes were investigated in this study, and among the four modes, the steady mode with pressure stepped downward was considered the best one. Experimental results showed that the effects of compaction on the streaming potential measurement for a microfiltration membrane was more obvious than that for a ultrafiltration membrane. Both feed pH and presoaking could affect the measurement of streaming potential.
基金Supported by the National Basic Research Program(973Program)(Nos.2007CB816001,2005CB422302,2005CB422307and2007CB411806)the National Natural Science Foundation of China(Nos.41030854,40776016,40906015,and40906016)+1 种基金the Major Project of National Natural Science Foundation of China(Nos.40490263,40976005)the Research Project of National Marine Data and Information Service(No.29106006C)
文摘We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10965006 and 10875035
文摘In this paper we study the bilayer quantum Hall (QH) effect on a noncommutative phase space (NCPS). By using perturbation theory, we calculate the energy spectrum, eigenfunction, Hall current, and Hall conductivity of the bilayer QH system, and express them in terms of noncommutative parameters θ and θ^-, respectively. In our calculation, we assume that these parameters vary from laver to laver.
文摘We have measured the deep energy level of the InP: Fe which is semi -insulator through the method of OTCS. The effect of light intensity on OTCS measurement is mainly discussed. There are electron trap of E_T =0.34 eV and hole trap of E_T = 1.13 eV in InP: Fe under the strong light and low temperature. The location of the OTCS peak of electron trap (E_T = 0.34 eV) moves towards the direction of high temperaturer, when the light intensity was increased, E_T is different under different light intensity. It is corrected in terms of theory that the stuff ratio of the deep energy level is affected by the light intensity. The experiments show that the error is decreased greatly with the correction.
基金This paper supported by National Natural Science Foundation of China (50079006).
文摘The main objective of this paper is to show an overview analysis of market power issues.Market power reflects the scarcity of power supply.It is the ability of a particular seller or group of sellers to maintain prices profitably above competitive levels for a significant period of time.Because the electric power system has its own characteristics that are different to other economic systems,both physical factors and economic factors of power system are key elements on this definition.We study some cases here,including different line limit levels,load levels and bid strategy through a market model based on OPF (optimal power flow) with a decommitment algorithm.
文摘This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the grid through a back-to-back AC-DC-AC PWM (pulse width modulation) converter. The RSC (rotor side converter) is controlled in such a way to extract a maximum power, for a wide range of wind speed. The GSC (grid side converter) is controlled in order to filter harmonic currents of a nonlinear load coupled at the PCC (point of common coupling) and ensure smooth DC bus voltage. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed and power quality improvement is achieved.
文摘In a smart grid, electric loads are supplied by various DC (direct current) power sources, such as solar cells or batteries. On the other hand, traditional AC (alternating current) loads like a directly connected induction motors will also be used. In the circumstances, a smart power conversion unit is one of key components, which can integrate these DC or AC apparatus and trade power among them. Authors have developed an integrated power converter based on a well-known circuit topology of flying capacitor multilevel converter. This paper describes the detail of the circuit topology and its characteristics depending on designed parameters. The achieved power quality is also verified by simulation study.
基金supported by a grant-in-aid for a scientific research from the Department of Atomic Energy(DAE)-Board of Research in Nuclear Science[S.No.2012/34/17/BRNS]of the Government of India
文摘Frequency and temperature dependent dielectric dispersion of 20PbF2?20TeO2?(60?x)B2O3?xEu2O3(x=0 to 2.5, mole fraction, %) glasses prepared by the melt?quenching technique were investigated in the frequency range 1 Hz?10 MHz and temperature range 313?773 K. Dielectric relaxation dynamics was analyzed based on the electric modulus behavior. Dielectric losses (tanδ) are found to be negligibly small in the temperature range 313?523 K, proving good thermal stability of the glasses. The present Eu2O3-doped oxyfluroborate glasses showed low dielectric loss at higher frequency and lower temperature, proving their suitability for nonlinear optical materials.
文摘Biomass plants often struggle to capture flow measurements reliably. High amounts of dry solids and fats complicate the measurement with an MID (Magnetic-Inductive) flowmeter and make it susceptible to faults. To overcome this impediment, the waste water treatment plant in Innsbruck, Austria, relies on electromagnetic pulsed AC (Alternating Current) flowmeters. Compared to pulsed DC (Direct Current) devices, AC devices are able to build up magnetic fields that are ten times stronger. Equipped with this capability, the Sitrans Transmag 2 is able to guarantee a constant and also high measuring accuracy, zero point stability and signal strength regardless of impurities in the medium or fluctuations in the magnetic field.
文摘This study is concerned with the feasibility of power generation using a pico-hydraulic turbine from sewage flowing in pipes. First, the sewage flow rate at two connection points to the Toyogawa River-Basin Sewerage, Japan, was explored for over a year to elucidate the hydraulic energy potential of the sewage. Second, the performance of the pico-hydraulic turbine was investigated via laboratory experiments that supposed the turbine to be installed in the sewage pipe at the connection points. This study indicates that the connection points have hydraulic potential that can be used for power generation throughout the year. It also demonstrates that the pico-hydraulic turbine can be usefully employed for power generation from sewage flowing in the pipe at the connection points.
文摘The Unified Power Flow Controller (UPFC) is one of the most versatile Flexible AC Transmission Systems (FACTS) devices that has unique capability of independently controlling the real and reactive power flows, in addition to regulate the system bus voltage. This paper presents performance analysis of Unified Power Flow Controller based on two axis theory. Based on this analysis, a new Artificial Neural Network (ANN) based controller has been proposed to improve the system performance. The controller rules are structured depending upon the relationship between series inserted voltage and the desired changes in real/reactive power flow in the power system. The effects of different controllers along with parameters of series transformer and transmission line have been investigated through developed control block model in SIMULINK tool box of MATLAB. The effectiveness of the proposed scheme is demonstrated by case studies.
文摘In 2006, except the basic improvement on HL-2A tokamak control system, data acquisition and processing system, a series of research activities have been developed in computer and control division. They include the construction of the high performance computer (HPC) system, the plasma configuration real-time reconstruction with EFIT code, the immigration of plasma simulation codes, the improvement of the poloidal field control system with circulating current, the design of the new data acquiring device with higher anti-disturbing power, the new software on soft X-ray spectrum measurement providing the multi-channel Te evolution, the upgrade to the HL-2A data storage system and experimental net. On the other hand, according to the arrangement of HL-2A modification project, a series of designs such as new plasma configuration, poloidal field coils distribution and plasma shape and position control system are on the processing.
文摘The current need to fasten the implementation of renewable energies greatly depends on the development of competitive storage devices, and while there is not a single technology which is likely capable to competitively cover the wide range of possible demands, electrochemical technologies are one of the most promising for many of them. For the realization of this promise, new materials fulfilling criteria such as high energy density, high power density, competitive cost, reliability, and environmental compatibility need to be developed in the near future. Electrochemical energy storage devices can be classified into two main technologies: supercapacitors and batteries (including redox flow batteries). Materials and applications for these technologies are discussed and compared, listing current status, technical and strategic challenges.
文摘The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that can operate connected to the public grid or autonomously where it regulates the site's voltage and frequency. In this paper, the potential of the microgrid in improving power quality issues of the site, specifically harmonic distortions, is demonstrated. Results show that flexible AC distribution interfacing system devices were able to compensate voltage harmonics when the microgrid was operating connected to the public grid and when operating autonomously. Other tests such as short-circuit, synchronization and blackstart were also conducted. The improvement in power quality and positive results of the other tests demonstrate that a self-supporting, reliable and efficient operation of the microgrid can be achieved.
基金mostly supported by the National Key Research and Development Program of China(2017YFA0206600)the Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDB-SSW-SLH006)+1 种基金the National Natural Science Foundation of China(61674141,51972300,21975245)the support from the Hundred Talents Program(Chinese Academy of Sciences)。
文摘For the state-of-the-art organic solar cells(OSCs),PEDOT:PSS is the most popularly used hole transport material for the conventional structure.However,it still suffers from several disadvantages,such as low conductivity and harm to ITO due to the acidic PSS.Herein,a simple method is introduced to enhance the conductivity and remove the additional PSS by water rinsing the PEDOT:PSS films.The photovoltaic devices based on the water rinsed PEDOT:PSS present a dramatic improvement in efficiency from 15.98%to 16.75%in comparison to that of the untreated counterparts.Systematic characterization and analysis reveal that although part of the PEDOT:PSS is washed away,it still leaves a smoother film and the ratio of PEDOT to PSS is higher than before in the remaining films.It can greatly improve the conductivity and reduce the damage to substrates.This study demonstrates that finely modifying the charge transport materials to improve conductivity and reduce defeats has great potential for boosting the efficiency of OSCs.
基金the National Natural Science Foundation of China (Grant Nos. 10925525, 11275159 and 10805036)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20100121110021)
文摘Heat and energy are conceptually different, but often are assumed to be the same without justification. An effective method for investigating diffusion properties in equilibrium systems is discussed. With this method, we demonstrate that for one-dimensional systems, using the indices of particles as the space variable, which has been accepted as a convention, may lead to misleading conclusions. We then show that though in one-dimensional systems there is no general connection between energy diffusion and heat conduction, however, a general connection between heat diffusion and heat conduction may exist. Relaxation behavior of local energy current fluctuations and that of local heat current fluctuations are also studied. We find that they are significantly different,though the global energy current equals the globe heat current.
基金This work was supported by the "Thousands Talents" Program for Pioneer Researcher and His Innovation Team, China. This work was also supported by the National Natural Science Foundation of China (No.51374029), Program for New Century Excellent Talents in University (No. NCET-13-0668), Fundamental Research Funds for the Central Universities (No. FRF-TP-14-008C1) and China Postdoctoral Science Foundation (No. 2014M550675).
文摘Nanostructured Mn3O4 was introduced to activated C (AC) by a novel sonochemical reaction, and the resulting nanocomposites were examined as supercapacitor electrodes. The sonication not only catalyzed the redox reaction but also promoted the diffusion of the precursors, causing the formation of coherent nanocomposites with Mn3O4 nanoparticles grown and uniformly distributed inside the mesopores of the AC. In addition, the extreme local condition in the sonochemical synthesis yielded an excessive amount of divalent manganese ions and oxygen vacancies. This novel microstructure endowed the sample with a superior performance, including a specific capacitance of 150 F/g compared with the value of 93 F/g for AC at a charge/discharge rate of 100 mA/g. A Li-ion capacitor delivered an energy density of 68 Wh/kg, compared with 41 Wh/kg for the AC capacitor at a power density of 210 W/kg.
文摘Many researches on critical nozzles have been performed to accurately measure the mass flow rate of gas flow,and to standardize the performance as a flow meter.Recently,much interest is being paid on the measurement of very small mass flow rate in industry fields such as MEMS applications.However,the design and performance data of the critical nozzles obtained so far have been applied mainly to the critical nozzles with comparatively large diameters,and the works available on miniature critical nozzles are lacking.In the present study,a computational fluid dynamics method has been applied to investigate the influence of the diffuser angle on discharge coefficient of the miniature critical nozzles.In computations,the throat diameter of critical nozzle is varied from 0.2 mm to 5.0 mm and the diffuser angle is changed from 2 deg to 8 deg.The computational results are validated with some experimental data available.The results show that the present computational results predict appropriately the discharge coefficient of the gas flows through miniature critical nozzles.It is known that the discharge coefficient is considerably influenced by the diffuser angle,as the throat diameter of nozzle becomes small below a certain value.This implies that the miniature critical nozzles should be carefully designed.