针对控制目标耦合导致统一电能质量调节器电能质量补偿响应速度慢、精度差、鲁棒性差等问题,提出了一种控制目标解耦的连续集模型预测(continuous control set model predictive control,CCS-MPC)直接控制策略。该控制策略依据当前时刻...针对控制目标耦合导致统一电能质量调节器电能质量补偿响应速度慢、精度差、鲁棒性差等问题,提出了一种控制目标解耦的连续集模型预测(continuous control set model predictive control,CCS-MPC)直接控制策略。该控制策略依据当前时刻被控目标电压、电流参数,构建目标唯一的预测控制模型,在简化控制器结构的同时实现串、并联侧电感电流和电容电压解耦控制,显著提高统一电能质量调节器动态性能。基于偏导数获取模型预测控制价值函数的最优解,实现参数变化、外部扰动工况下负载电压、电网电流高精度补偿。仿真验证了所提控制策略的有效性。展开更多
介绍了由一个并联电压源换流器(shunt-VSC)和两个串联电压源换流器(series-VSC)组成的多换流器式统一电能质量调节器(Multiconverter-Unified Power Quality Conditioner),用于连接两条具有不同负载特性的配电线路,三个换流器共用一组电...介绍了由一个并联电压源换流器(shunt-VSC)和两个串联电压源换流器(series-VSC)组成的多换流器式统一电能质量调节器(Multiconverter-Unified Power Quality Conditioner),用于连接两条具有不同负载特性的配电线路,三个换流器共用一组电容,采用背靠背方式,实现动态电压恢复、有源滤波、故障限流等功能,提高供电质量和可靠性。采用series-VSC串接限流电感的方法限制故障电流,不消耗有功功率。对功率在不同换流器之间的流动情况进行分析和说明。仿真结果表明,MC-UPQC可有效治理电压、电流谐波污染,同时降低网络故障电流水平,易于不同网络互连。展开更多
阐述了p-q-r瞬时功率理论的原理,提出一种特殊情况下的简化p-q-r理论,基于这一理论,提出一种统一电能质量调节器(unified power quality conditioner,UPQC)的综合控制策略,此策略综合了通常的直接控制策略和间接控制策略的特点。重点介...阐述了p-q-r瞬时功率理论的原理,提出一种特殊情况下的简化p-q-r理论,基于这一理论,提出一种统一电能质量调节器(unified power quality conditioner,UPQC)的综合控制策略,此策略综合了通常的直接控制策略和间接控制策略的特点。重点介绍了补偿电流及补偿电压的计算方法,详细分析了控制策略的原理,推导出p-q-r坐标下的相关运算公式,给出了在该坐标轴上的详细控制框图。仿真结果显示,将采用这种控制策略的UPQC用于补偿三相四线非线性及不平衡系统,可以实现对负载谐波、无功及中线电流较好的补偿,使负载获得额定端电压,同时提高电源侧功率因数,表明这种控制策略是可行、有效的。展开更多
文摘针对控制目标耦合导致统一电能质量调节器电能质量补偿响应速度慢、精度差、鲁棒性差等问题,提出了一种控制目标解耦的连续集模型预测(continuous control set model predictive control,CCS-MPC)直接控制策略。该控制策略依据当前时刻被控目标电压、电流参数,构建目标唯一的预测控制模型,在简化控制器结构的同时实现串、并联侧电感电流和电容电压解耦控制,显著提高统一电能质量调节器动态性能。基于偏导数获取模型预测控制价值函数的最优解,实现参数变化、外部扰动工况下负载电压、电网电流高精度补偿。仿真验证了所提控制策略的有效性。
文摘介绍了由一个并联电压源换流器(shunt-VSC)和两个串联电压源换流器(series-VSC)组成的多换流器式统一电能质量调节器(Multiconverter-Unified Power Quality Conditioner),用于连接两条具有不同负载特性的配电线路,三个换流器共用一组电容,采用背靠背方式,实现动态电压恢复、有源滤波、故障限流等功能,提高供电质量和可靠性。采用series-VSC串接限流电感的方法限制故障电流,不消耗有功功率。对功率在不同换流器之间的流动情况进行分析和说明。仿真结果表明,MC-UPQC可有效治理电压、电流谐波污染,同时降低网络故障电流水平,易于不同网络互连。
文摘阐述了p-q-r瞬时功率理论的原理,提出一种特殊情况下的简化p-q-r理论,基于这一理论,提出一种统一电能质量调节器(unified power quality conditioner,UPQC)的综合控制策略,此策略综合了通常的直接控制策略和间接控制策略的特点。重点介绍了补偿电流及补偿电压的计算方法,详细分析了控制策略的原理,推导出p-q-r坐标下的相关运算公式,给出了在该坐标轴上的详细控制框图。仿真结果显示,将采用这种控制策略的UPQC用于补偿三相四线非线性及不平衡系统,可以实现对负载谐波、无功及中线电流较好的补偿,使负载获得额定端电压,同时提高电源侧功率因数,表明这种控制策略是可行、有效的。