期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
基于IHHO-SVM的电能质量扰动信号识别方法 被引量:9
1
作者 陈晓华 王志平 +4 位作者 吴杰康 蔡锦健 张勋祥 阚东旺 陈敦进 《浙江电力》 2023年第8期115-124,共10页
针对SVM(支持向量机)的惩罚因子和核函数参数在寻优过程中容易陷入局部最优以及哈里斯鹰优化算法容易陷入局部最优的问题,提出一种利用IHHO(改进哈里斯鹰优化)算法对SVM的惩罚因子和核函数参数进行寻优,构建IHHO-SVM分类器来对电能质量... 针对SVM(支持向量机)的惩罚因子和核函数参数在寻优过程中容易陷入局部最优以及哈里斯鹰优化算法容易陷入局部最优的问题,提出一种利用IHHO(改进哈里斯鹰优化)算法对SVM的惩罚因子和核函数参数进行寻优,构建IHHO-SVM分类器来对电能质量扰动信号进行识别的方法。通过对9种不同的电能质量扰动信号加入0 dB、20 dB和30 dB的高斯白噪声来进行测试,利用改进的自适应噪声完备集合经验模式分解算法分解信号并提取信号前3阶固有模态函数分量的能量熵和样本熵作为一组特征向量,将特征向量进行归一化处理后输入9种分类器进行对比。仿真结果表明,在信号加入0 dB、20 dB和30 dB高斯白噪声的情况下,IHHO-SVM分类器的识别准确率分别为99.11%、97.78%和97.33%,其分类效果是所有分类器中最优的,证明了其分类的准确性、优越性和抗噪性。 展开更多
关键词 电能质量 扰动信号 支持向量机 哈里斯鹰优化算法 扰动识别
下载PDF
基于广义S变换和PSO-ELM的电能质量扰动信号识别 被引量:9
2
作者 杨万清 姜学朴 刘冰 《电力电容器与无功补偿》 北大核心 2017年第2期129-134,140,共7页
电能质量扰动信号识别是电能质量扰动参数分析、扰动源定位和综合治理的前提。针对S变换在电能质量扰动信号分析中特征表现能力不足,以及极限学习机随机设置输入权值和隐藏层阈值造成识别准确率低的问题,提出一种基于广义S变换(generali... 电能质量扰动信号识别是电能质量扰动参数分析、扰动源定位和综合治理的前提。针对S变换在电能质量扰动信号分析中特征表现能力不足,以及极限学习机随机设置输入权值和隐藏层阈值造成识别准确率低的问题,提出一种基于广义S变换(generalized S-transform,GST)和粒子群(particle swarm optimization,PSO)优化极限学习机(extreme learning machine,ELM)的电能质量扰动信号识别新方法。首先,将粗调、微调和精调因子引入S变换的高斯窗函数中,并根据扰动信号的频率特点调整各因子值,从而获得更具针对性的时-频分辨率,以增强特征表现能力。其次,利用PSO的寻优能力,获取最大适应度时对应的输入权值和隐藏层阈值,提升ELM的识别准确率。最后,根据GST时-频模矩阵生成特征集,对PSO-ELM进行训练并测试其识别能力。对比实验表明,相较于S变换和ELM方法,本文提出方法识别准确率更高、抗噪性更强,能够满足工业环境下的电能质量扰动信号识别需要。 展开更多
关键词 电能质量 扰动识别 S变换 粒子群 极限学习机
下载PDF
基于ESMD和SSA-PNN的电能质量扰动信号识别分类 被引量:2
3
作者 孙玉杰 张占强 +1 位作者 孟克其劳 吕晓圆 《现代电子技术》 2022年第14期108-114,共7页
针对传统概率神经网络(PNN)分类器中平滑因子依靠人工经验赋值,导致电能质量扰动信号识别分类精度不高的问题,文中提出一种基于极点对称模态分解和麻雀搜索算法优化概率神经网络(SSA-PNN)的电能质量扰动信号识别分类方法。首先,添加含... 针对传统概率神经网络(PNN)分类器中平滑因子依靠人工经验赋值,导致电能质量扰动信号识别分类精度不高的问题,文中提出一种基于极点对称模态分解和麻雀搜索算法优化概率神经网络(SSA-PNN)的电能质量扰动信号识别分类方法。首先,添加含噪声的电能质量扰动信号;其次,利用极点对称模态分解算法对扰动信号进行分解,得到不同频率的本征模态函数;再根据原信号与本征模态函数分量的相关系数选取有代表性的分量,对代表性分量提取能量值和样本熵并将其作为特征向量;最后,创新性地利用麻雀搜索算法优化概率神经网络中的平滑因子,寻找最优平滑因子构建SSA-PNN分类器,将特征向量输入传统PNN分类器和SSA-PNN分类器中进行识别分类。仿真结果表明,相较于传统PNN分类器,SSAPNN分类器的准确率较高,可为电能质量扰动信号识别分类提供一种新的解决方案。 展开更多
关键词 电能质量扰动信号 极点对称模态分解 本征模态函数 麻雀搜索算法 概率神经网络 平滑因子
下载PDF
多源信号特征融合的电能质量扰动识别
4
作者 陈思源 程志友 +1 位作者 杨猛 胡乐乐 《安徽大学学报(自然科学版)》 CAS 北大核心 2024年第4期62-66,共5页
为了解决风能、太阳能等可再生能源输出的不稳定性和间歇性给电能质量带来的问题,提出多源信号特征融合的电能质量扰动识别方法.该方法引入电流信息增强扰动特征,为解决电能质量扰动识别提供了新的视角.算例分析结果表明:相对于其他2种... 为了解决风能、太阳能等可再生能源输出的不稳定性和间歇性给电能质量带来的问题,提出多源信号特征融合的电能质量扰动识别方法.该方法引入电流信息增强扰动特征,为解决电能质量扰动识别提供了新的视角.算例分析结果表明:相对于其他2种方法,该文方法的4个评价指标(准确率、精确率、召回率和F1分数)均最高.因此,该文方法具有优越性. 展开更多
关键词 电能质量扰动 残差网络 多源信号特征融合 相对位置矩阵 有效通道注意力
下载PDF
基于深度学习的复合电能质量扰动识别方法
5
作者 邓亚平 贾颢 +2 位作者 张晓晖 同向前 王璐 《电气传动》 2024年第3期76-83,共8页
精准的电能质量扰动识别是对电能质量扰动事件发生后需要解决的主要问题之一,这对划分责任和加快电力市场化进程均具有重要意义,而海量的电能质量监测数据则为电能质量扰动识别提供了条件与机遇。不同的电能质量扰动类型,其电气特征上... 精准的电能质量扰动识别是对电能质量扰动事件发生后需要解决的主要问题之一,这对划分责任和加快电力市场化进程均具有重要意义,而海量的电能质量监测数据则为电能质量扰动识别提供了条件与机遇。不同的电能质量扰动类型,其电气特征上也存在区别,故可利用不同电能质量扰动波形之间的差异来区分电能质量扰动类型。结合深度学习理论,建立一种基于双向独立循环神经网络的复合电能质量扰动识别方法,通过提取电能质量扰动信号的本质特征量,建立输入序列与输出序列之间的内在对应关系,克服了分析结果对物理特征量的依赖性,提升了电能质量扰动识别准确率。实验结果表明,所提方法可以有效应对复合电能质量扰动的多样性问题,可以直接从原始的底层数据中自主学习复合电能质量扰动信号中所隐藏的本质特征量,识别准确率高。 展开更多
关键词 电能质量扰动识别 双向独立循环神经网络 深度学习
下载PDF
基于ISSA-XGBoost的电能质量扰动识别方法研究
6
作者 商立群 李朝彪 +2 位作者 邓力文 郝天奇 刘晗 《电力系统保护与控制》 EI CSCD 北大核心 2024年第13期115-124,共10页
针对传统电能质量扰动(power quality disturbances,PQDs)识别中特征提取有冗余,识别精度不高等问题,提出了一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化特征选择和极致梯度提升(eXtreme gradient boosting,X... 针对传统电能质量扰动(power quality disturbances,PQDs)识别中特征提取有冗余,识别精度不高等问题,提出了一种基于改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化特征选择和极致梯度提升(eXtreme gradient boosting,XGBoost)的电能质量扰动识别方法。首先对电能质量扰动信号进行S变换,提取61种电能质量特征。再通过ISSA同时选择最优特征子集和XGBoost中最优参数,剔除冗余特征,提高识别精度。最后根据优化后的最优特征子集和XGBoost实现电能质量扰动的识别。仿真结果表明,所提出的方法能有效选择最优特征子集,对噪声环境下的19种电能质量扰动信号进行高效识别,并且具有较高的识别精度。 展开更多
关键词 电能质量 扰动识别 XGBoost 麻雀搜索算法
下载PDF
基于二维时频谱图与改进YOLOv5的电能质量扰动识别
7
作者 李欣 吕干云 +4 位作者 龚彧 毕睿华 叶加星 刘晓宏 于相宜 《浙江电力》 2024年第10期35-44,共10页
随着新型电力系统中新能源渗透率逐渐升高,电网结构复杂性增加,PQD(电能质量扰动)呈现多样化和复杂化的趋势。为实现电能质量扰动的精准识别,提出一种基于二维时频谱图与改进YOLOv5的电能质量扰动图像识别的方法。首先,利用S变换将PQD... 随着新型电力系统中新能源渗透率逐渐升高,电网结构复杂性增加,PQD(电能质量扰动)呈现多样化和复杂化的趋势。为实现电能质量扰动的精准识别,提出一种基于二维时频谱图与改进YOLOv5的电能质量扰动图像识别的方法。首先,利用S变换将PQD数据映射成二维时频谱图,通过图像来表征时间、频率和幅值的扰动细节特征;然后,搭建引入ASPP(空洞空间卷积池化金字塔)结构和注意力机制的YO-LOv5训练网络,扩大特征图的感受野以充分提取扰动图像特征,进而以图像识别方法实现PQD分类识别;最后,利用仿真数据进行扰动识别准确率和鲁棒性的验证。结果表明,该方法的识别准确率较高,且图像识别法的引入有助于PQD识别结果的可视化。 展开更多
关键词 电能质量扰动图像识别 时频谱图像 YOLOv5 空洞空间卷积池化金字塔 注意力机制
下载PDF
基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法
8
作者 时帅 陈子文 +3 位作者 黄冬梅 贺琪 孙园 胡伟 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期102-111,共10页
针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseN... 针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseNet)的PQDs识别新方法。首先将一维PQD信号经MTF映射为二维图像,接着将图像输入到具有新型通道注意力机制的改进DenseNet中,最后训练网络自行从海量样本中提取特征,实现PQDs信号的正确识别。算例结果表明:在无噪声和信噪比为20、30 dB情况下,所提改进DenseNet能有效克服传统方法中主观性强、抗噪性能差等特征缺点,可以更好地提取复合PQD特征信息,对复合PQD识别率高。 展开更多
关键词 电能质量扰动 马尔科夫迁移场 可视化 密集卷积网络 通道注意力机制 分类识别
下载PDF
基于多模态图像融合的DCCNN识别电能质量扰动
9
作者 余雷 刘宏伟 孟芸 《现代电子技术》 北大核心 2024年第3期137-142,共6页
为提高电力系统中电能质量扰动识别准确率,提出一种基于多模态图像融合的双通道卷积神经网络算法。首先,为降低传统格拉姆求和场生成特征图的冗余度,提出一种改进的格拉姆求和场;然后,通过改进的格拉姆求和场、马尔可夫转移场和无阈值... 为提高电力系统中电能质量扰动识别准确率,提出一种基于多模态图像融合的双通道卷积神经网络算法。首先,为降低传统格拉姆求和场生成特征图的冗余度,提出一种改进的格拉姆求和场;然后,通过改进的格拉姆求和场、马尔可夫转移场和无阈值递归图分别将电能质量扰动时序数据进行模态变换;其次,对转换生成的三类图像各提取出一个单通道灰度图进行融合;最后,将融合得到的特征图输入到双通道卷积神经网络中进行扰动识别。实验表明:多模态融合得到的特征图扰动特征保留更多,而且双通道卷积神经网络提取特征能力强,具有一定的抗噪鲁棒性,扰动识别准确率高。 展开更多
关键词 电能质量扰动 格拉姆求和场 马尔可夫转移场 无阈值递归图 双通道卷积神经网络 识别
下载PDF
基于GA优化卷积神经网络的含分布式光伏低压台区电能质量扰动特征识别研究 被引量:1
10
作者 张智轶 段文方 +2 位作者 韦家义 赵彬 林海燕 《电子设计工程》 2024年第3期120-124,共5页
针对扰动特征识别效果较差的问题,采用基于GA优化卷积神经网络的含分布式光伏低压台区电能质量扰动特征识别方法。获取各尺度扰动信号的分解系数,求解电扰动信号各尺度的能量值与能量熵,将能量值与能量熵当成扰动特征提取的依据,完成扰... 针对扰动特征识别效果较差的问题,采用基于GA优化卷积神经网络的含分布式光伏低压台区电能质量扰动特征识别方法。获取各尺度扰动信号的分解系数,求解电扰动信号各尺度的能量值与能量熵,将能量值与能量熵当成扰动特征提取的依据,完成扰动特征提取;利用GA算法优化卷积神经网络结构参数,在优化后的卷积神经网络内输入提取的扰动特征,输出扰动特征识别结果。通过仿真实验得出,该方法能有效提取扰动特征,提取到的特征类型数量与实际类型数量一致;在噪声环境下,该方法依旧能够有效识别扰动特征,最低识别精度高达98.7%。 展开更多
关键词 GA算法 卷积神经网络 分布式光伏 低压台区 电能质量扰动 特征识别
下载PDF
基于马尔可夫变迁场和EfficientNet的复合电能质量扰动识别
11
作者 付宽 王洪新 +4 位作者 刘杰 郭靖 唐志勇 欧洋 陈家乐 《电网与清洁能源》 CSCD 北大核心 2024年第4期74-83,共10页
新型电力系统中电能质量扰动问题愈加复杂和严重,多种电能质量扰动同时出现,导致传统算法识别准确率降低。提出一种基于马尔可夫变迁场和EfficientNet的复合电能质量扰动识别算法。采用马尔可夫变迁场将电能质量扰动信号可视化映射为二... 新型电力系统中电能质量扰动问题愈加复杂和严重,多种电能质量扰动同时出现,导致传统算法识别准确率降低。提出一种基于马尔可夫变迁场和EfficientNet的复合电能质量扰动识别算法。采用马尔可夫变迁场将电能质量扰动信号可视化映射为二维特征图像;通过EfficientNet卷积神经网络处理图像数据,实现扰动信号的特征提取;利用神经架构搜索自动调节卷积神经网络超参数进行网络训练,建立电能质量扰动分类识别模型。仿真结果表明,所提方法能够准确高效地提取扰动信号特征,对复合电能质量扰动分类效果好且抗噪声能力强。 展开更多
关键词 电能质量 电能质量扰动识别 马尔可夫变迁场 卷积神经网络 特征提取 模式识别
下载PDF
基于IGWO-KELM的复合电能质量扰动识别
12
作者 万文欣 陈柏寒 +2 位作者 杨威 何诗雨 刘闯 《山东电力高等专科学校学报》 2024年第3期5-9,14,共6页
为了提高复合电能质量扰动(power quality disturbance,PQD)识别结果的正确率,提出了一种基于改进灰狼优化(improved grey wolf optimization,IGWO)算法核极限学习机(kernel extreme leavning madine,KELM)的复合PQD识别方法。利用S变... 为了提高复合电能质量扰动(power quality disturbance,PQD)识别结果的正确率,提出了一种基于改进灰狼优化(improved grey wolf optimization,IGWO)算法核极限学习机(kernel extreme leavning madine,KELM)的复合PQD识别方法。利用S变换获得复合PQD信号的特征量,以此作为复合PQD识别模型的输入量。采用精英反向学习、自适应收敛系数和柯西变异这3种策略对灰狼优化算法进行改进,得到全局搜索性能更好的IGWO算法。采用IGWO算法对KELM的核系数和惩罚参数进行优化,建立了基于IGWO-KELM的复合PQD识别模型。仿真分析结果表明,该模型识别的准确率高达98.10%,识别效果明显优于其他方法。 展开更多
关键词 复合电能质量扰动 识别 改进灰狼优化算法 核极限学习机 正确率
下载PDF
新能源电能质量多扰动信号自动检测方法
13
作者 崔芳芳 吕志林 《电工技术》 2024年第19期58-59,共2页
为提升新能源电能质量多扰动信号检测的精确度,并降低检测结果与扰动实际开始和结束时间之间的误差,开展新能源电能质量多扰动信号自动检测方法研究。先引入数学形态学理论,对新能源电能质量信号进行消噪和滤波处理,后以此为基础,结合... 为提升新能源电能质量多扰动信号检测的精确度,并降低检测结果与扰动实际开始和结束时间之间的误差,开展新能源电能质量多扰动信号自动检测方法研究。先引入数学形态学理论,对新能源电能质量信号进行消噪和滤波处理,后以此为基础,结合网格分形理论,实现对多扰动信号的时间定位与自动检测。实例结果表明,新的检测方法展现出了极高的检测精度,能准确地定位信号扰动的发生时间,应用效果较好。 展开更多
关键词 新能源 质量 信号 扰动 电能
下载PDF
基于IGWO算法优化LSSVM的电能质量扰动识别方法
14
作者 江娜 彭震东 +2 位作者 黄芳 尹凤梅 李巧玲 《红水河》 2024年第3期100-106,共7页
为了提高电能质量扰动(power quality disturbance,PQD)识别结果的准确性,笔者提出一种基于改进灰狼优化算法(improved grey wolf optimization,IGWO)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的PQD识别方... 为了提高电能质量扰动(power quality disturbance,PQD)识别结果的准确性,笔者提出一种基于改进灰狼优化算法(improved grey wolf optimization,IGWO)优化最小二乘支持向量机(least squares support vector machine,LSSVM)的PQD识别方法。通过采用收敛因数指数调整、自适应位移和权重动态修订等措施对灰狼优化算法进行改进,得到IGWO算法;以PQD信号的9个特征量为支持向量、7种PQD类型为输出量,利用IGWO算法寻找LSSVM的最优参数,建立基于IGWO-LSSVM的PQD识别模型并进行仿真分析,且与其他模型的识别结果进行对比。结果表明,相比算例中列出的几种对比模型,IGWO-LSSVM模型识别结果的正确率更高,验证了所提PQD识别方法的有效性和实用性。 展开更多
关键词 电能质量扰动 识别 改进灰狼优化算法 最小二乘支持向量机 S变换
下载PDF
基于PRSGMD-XGBoost的光伏直流电能质量扰动识别
15
作者 朱宪宇 熊婕 +3 位作者 李庆先 刘良江 左从瑞 刘青 《电工电气》 2024年第7期61-67,共7页
光伏电网受天气因素和非线性负载等影响,直流电信号中存在的扰动成分使得电能质量评估的准确性难以保障。利用复合多尺度模糊熵可克服光伏直流电信号初始单分量相似性度量突变的问题,构建了正则化CMFE算子评估各初始单分量重构后的复杂... 光伏电网受天气因素和非线性负载等影响,直流电信号中存在的扰动成分使得电能质量评估的准确性难以保障。利用复合多尺度模糊熵可克服光伏直流电信号初始单分量相似性度量突变的问题,构建了正则化CMFE算子评估各初始单分量重构后的复杂度并约束残余量能量最小,从而实现电信号和噪声等扰动的准确分离,在此基础上,提出了基于部分重构辛几何模态分解(PRSGMD)的光伏直流电信号自适应去噪方法,结合极限梯度提升机(XGBoost)可有效挖掘特征与暂态稳定性之间关系的优势,实现了光伏直流电信号中复合扰动的分离和识别。 展开更多
关键词 光伏 电能质量扰动识别 部分重构辛几何模态分解 极限梯度提升机
下载PDF
基于SVD-ILMD的暂态电能质量扰动定位检测方法
16
作者 程江洲 张志强 +3 位作者 闫冉阳 李小来 谢卓然 胡哲豪 《浙江电力》 2024年第8期1-11,共11页
为实现对电网非平稳扰动信号的快速、准确分析,提出了融合SVD(奇异值分解)与ILMD(优化局部均值分解)的暂态电能质量扰动定位检测方法。首先,通过ILMD与模糊隶属度函数阈值处理噪声信息,削弱噪声干扰;然后,构造差值信号并利用滑窗SVD增... 为实现对电网非平稳扰动信号的快速、准确分析,提出了融合SVD(奇异值分解)与ILMD(优化局部均值分解)的暂态电能质量扰动定位检测方法。首先,通过ILMD与模糊隶属度函数阈值处理噪声信息,削弱噪声干扰;然后,构造差值信号并利用滑窗SVD增强扰动特征,进一步抑制噪声干扰;最后,基于特征增强信号提出一种自适应阈值截断的暂态电能质量扰动定位检测方法。经仿真分析与算法对比,验证了所提方法定位准确、抗噪性强、计算量小,对过零与微弱扰动也有较好的定位效果。 展开更多
关键词 暂态电能质量 扰动定位检测 差值信号 奇异值分解 局部均值分解
下载PDF
经验小波变换和改进S变换结合的电能质量检测与识别方法
17
作者 李宁 王茹月 朱龙辉 《电气传动》 2024年第5期26-33,72,共9页
为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法。该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率... 为分析不确定干扰因素影响下的实际电力网络电能质量问题,提出一种经验小波变换(EWT)和改进S变换相结合的电能质量检测与识别方法。该方法一方面利用EWT联合归一化直接正交(NDQ)算法和奇异值分解(SVD)算法准确提取调幅-调频分量的频率、幅值和时间参数,另一方面考虑到EWT算法在高噪声环境下瞬时幅值波动的问题,引入改进S变换提取高噪声干扰下的电能质量扰动时频信息,最后,基于EWT和改进S变换提取的扰动特征向量,利用基于改进粒子群优化算法(IPSO)优化支持向量机(SVM)的电能质量扰动识别分类器实现扰动类型的精确识别。仿真和实验表明所提方法在复合扰动识别分类时平均识别准确率为93.23%,且能够准确识别4种实测扰动信号。 展开更多
关键词 电能质量 扰动检测识别 经验小波变换 快速多分辨率S变换 改进粒子群优化 支持向量机
下载PDF
基于马尔可夫转移场和深度残差网络的电能质量复合扰动多标签分类 被引量:1
18
作者 罗溢 李开成 +3 位作者 肖贤贵 尹晨 李贝奥 李旋 《中国电机工程学报》 EI CSCD 北大核心 2024年第7期2519-2530,I0002,共13页
现代电力系统的电能质量扰动逐渐复杂化和多样化,传统的分类方法难以适应复杂多样的扰动变化。依据神经网络进行识别分类的研究都采用传统的单标签分类方法,当出现标签集以外的复合扰动,该分类方法将无法使用。若要更新扰动标签集,则需... 现代电力系统的电能质量扰动逐渐复杂化和多样化,传统的分类方法难以适应复杂多样的扰动变化。依据神经网络进行识别分类的研究都采用传统的单标签分类方法,当出现标签集以外的复合扰动,该分类方法将无法使用。若要更新扰动标签集,则需要整个分类模型重新训练。因此,该文利用深度残差网络构建一种适应能力更强的多标签分类系统,该系统能够准确识别训练样本标签集以外未知标签组合的电能质量复合扰动(power quality disturbances,PQDs)。首先利用马尔可夫转移场(Markov transition field,MTF)将一维时域扰动信号转换为二维可视化图像,利用深度残差网络(ResNet)建立9个二分类器提取二维图像中涵盖的扰动特征。通过9个二分类器构成的多标签分类系统进行扰动分类,其训练样本标签集内分类正确率可达97.58%,掺杂标签集外的扰动信号平均正确率可达97.67%,远高于同级别的分类系统。 展开更多
关键词 电能质量扰动 多标签 马尔可夫转移场 深度残差网络 扰动识别
下载PDF
基于自适应权重混合策略主动学习的电能质量复合扰动识别
19
作者 魏萱 张浩毅 +1 位作者 赵晨 李开成 《华南师范大学学报(自然科学版)》 CAS 北大核心 2023年第6期55-62,共8页
为了降低电能质量复合扰动(CPQDs)数据的标注成本,利用混合策略的主动学习方法与拉普拉斯极限学习机来识别电力配电网络中的CPQDs。提出将不同的主动学习采样策略进行混合,选择最富含信息和最具有代表性的CPQDs数据进行标记。在主动学... 为了降低电能质量复合扰动(CPQDs)数据的标注成本,利用混合策略的主动学习方法与拉普拉斯极限学习机来识别电力配电网络中的CPQDs。提出将不同的主动学习采样策略进行混合,选择最富含信息和最具有代表性的CPQDs数据进行标记。在主动学习过程中利用对数函数自适应调整不同策略权重。为了提高分类器的性能,在监督学习和无监督学习的框架下将拉普拉斯流形正则化并嵌入到极限学习机中。将所提出的架构与主流的主动学习算法在代码合成以及硬件生成的数据集上进行了比较,结果显示所提出的方法拥有更好的性能。 展开更多
关键词 电能质量 扰动识别 极限学习机 自适应权重 主动学习
下载PDF
基于双通道GAF和深度残差网络的电能质量复合扰动识别 被引量:15
20
作者 贺才郡 李开成 +4 位作者 杨王旺 董宇飞 宋朝霞 范伟欣 王伟 《电网技术》 EI CSCD 北大核心 2023年第1期369-376,共8页
针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种利用格拉姆角场(Gramain angular fields,GAF)和深度残差网络(residual network,ResN... 针对传统电能质量扰动(power quality disturbances,PQDs)识别过程中存在的信号特征提取复杂、算法识别能力不足和复合扰动区分困难等问题,提出了一种利用格拉姆角场(Gramain angular fields,GAF)和深度残差网络(residual network,ResNet)进行复合扰动识别的方法。首先对一维时间序列PQDs信号进行标准化与极坐标编码,然后采用双通道GAF方法保留信号时序特征并映射成为二维图像,形成信息充足、特征明显的双通道图像训练集,在此基础上利用ResNet进行深层次的特征提取,构造适用于复合PQDs分类的网络框架。仿真实验表明该方法特征提取能力强,且抗噪性能好,并且对复合扰动识别率高。 展开更多
关键词 电能质量扰动 格拉姆角场 二维图像 深度残差网络 扰动识别
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部