期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于ESMD与SVM的电能质量混合扰动识别
被引量:
1
1
作者
杨晓楠
吕国强
+1 位作者
侯鹏飞
毕贵红
《软件导刊》
2019年第11期42-47,共6页
针对实际电能质量扰动种类繁多、扰动信号差异不明显、存在多种混合扰动,导致识别电能质量非常困难的情况,提出一种基于极点对称经验模式分解方法(ESMD)和支持向量机(SVM)的电能质量混合扰动信号分类识别新方法。首先,对加入白噪声的混...
针对实际电能质量扰动种类繁多、扰动信号差异不明显、存在多种混合扰动,导致识别电能质量非常困难的情况,提出一种基于极点对称经验模式分解方法(ESMD)和支持向量机(SVM)的电能质量混合扰动信号分类识别新方法。首先,对加入白噪声的混合扰动信号利用小波软阈值去噪处理;其次,利用ESMD将信号分解为不同信号分量,对每类扰动的不同信号分量分别提取样本熵和互样本熵特征值,所有分量特征值构成特征向量;最后利用SVM对扰动信号特征向量进行分类和混合扰动识别。研究表明,该方法对混合扰动识别正确率很高,是一个有效的方法。
展开更多
关键词
样本熵
互样本熵
电能质量混合扰动
极点对称经验模式分解方法
支持向量机
下载PDF
职称材料
题名
基于ESMD与SVM的电能质量混合扰动识别
被引量:
1
1
作者
杨晓楠
吕国强
侯鹏飞
毕贵红
机构
昆明理工大学冶金与能源工程学院
西南交通大学电气工程学院
昆明理工大学电力工程学院
出处
《软件导刊》
2019年第11期42-47,共6页
文摘
针对实际电能质量扰动种类繁多、扰动信号差异不明显、存在多种混合扰动,导致识别电能质量非常困难的情况,提出一种基于极点对称经验模式分解方法(ESMD)和支持向量机(SVM)的电能质量混合扰动信号分类识别新方法。首先,对加入白噪声的混合扰动信号利用小波软阈值去噪处理;其次,利用ESMD将信号分解为不同信号分量,对每类扰动的不同信号分量分别提取样本熵和互样本熵特征值,所有分量特征值构成特征向量;最后利用SVM对扰动信号特征向量进行分类和混合扰动识别。研究表明,该方法对混合扰动识别正确率很高,是一个有效的方法。
关键词
样本熵
互样本熵
电能质量混合扰动
极点对称经验模式分解方法
支持向量机
Keywords
sample entropy
cross sample entropy
power quality complex disturbances
extreme-point symmetric mode decomposi tion
support vector machine
分类号
TP301 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于ESMD与SVM的电能质量混合扰动识别
杨晓楠
吕国强
侯鹏飞
毕贵红
《软件导刊》
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部