A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized b...Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10^-7 mol·cm^-2·min^-1 and 97.76 kJ·mol^-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.展开更多
Photodynamic therapy(PDT)as a non-invasive anticancer modality has received increasing attention due to its advantages of noninvasiveness,high temporospatial selectivity,simple and controllable operation,etc.PDT mainl...Photodynamic therapy(PDT)as a non-invasive anticancer modality has received increasing attention due to its advantages of noninvasiveness,high temporospatial selectivity,simple and controllable operation,etc.PDT mainly relies on the generation of toxic reactive oxygen species(ROS)by photosensitizers(PSs)under the light irradiation to cause cancer cell apoptosis and death.However,solid tumors usually exhibit an inherent hypoxic microenvironment,which greatly limits the PDT efficacy of these high oxygen-dependent conventional type II PSs.Therefore,it is of great importance to design and develop efficient type I PSs that are less oxygen-dependent for the treatment of hypoxic tumors.Herein,a new strategy for the preparation of efficient type I PSs by introducing the photoinduced electron transfer(PET)mechanism is reported.DR-NO_(2) is obtained by introducing 4-nitrobenzyl to(Z)-2-(5-(4-(diethylamino)-2-hydroxybenzylidene)-4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile(DR-OH)with aggregation-induced emission(AIE)feature.The AIE feature ensures their high ROS generation efficiency in aggregate,and the PET process leads to fluorescence quenching of DR-NO_(2) to promote triplet state formation,which also promotes intramolecular charge separation and electron transfer that is conducive for type I ROS particularly superoxide radicals generation.In addition,DR-NO_(2) nanoparticles are prepared by nanoprecipitation to possess nanoscaled sizes,high cancer cell uptake,and excellent type I ROS generation ability,which results in an excellent performance in PDT ablation of MCF-7 cancer cells.This PET strategy for the development of type I PSs possesses great potential for PDT applications against hypoxic tumors.展开更多
In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuatio...In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.展开更多
In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an opt...In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper.First,Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator.Then,a real time block matching algorithm is researched and its block size is optimized with a standard object.Finally,experiments are performed with respect to a nanometer movement platform system,and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.展开更多
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金Supported by the National Advanced Materials Committee of China(No.715-006-0120)and the National Natural Science Foundation of China(No.59789201).
文摘Perovskite type SrCo0.4Fe0.6O3-δ(SCF) membrane and a novel perovskite-related ZrO2 doped SrCo0.4Fe0.6O3-δ(SCFZ) membrane were successfully prepared by isostatic pressing. The sintered membranes were characterized by high-temperature X-ray diffraction (HTXRD) and energy dispersive spectroscopy (EDS). The oxygen permeabilities of membranes have been measured in the temperature range of 923 K to 1243 K. The oxygen permeation flux at 1123K and activation energy of SCFZ membrane with the thickness of 2mm are respectively 2.68×10^-7 mol·cm^-2·min^-1 and 97.76 kJ·mol^-1. The results of HTXRD in argon atmosphere and the oxygen permeation experiment indicate that the SCFZ membrane is stable at elevated temperature and low oxygen partial pressure.
文摘Photodynamic therapy(PDT)as a non-invasive anticancer modality has received increasing attention due to its advantages of noninvasiveness,high temporospatial selectivity,simple and controllable operation,etc.PDT mainly relies on the generation of toxic reactive oxygen species(ROS)by photosensitizers(PSs)under the light irradiation to cause cancer cell apoptosis and death.However,solid tumors usually exhibit an inherent hypoxic microenvironment,which greatly limits the PDT efficacy of these high oxygen-dependent conventional type II PSs.Therefore,it is of great importance to design and develop efficient type I PSs that are less oxygen-dependent for the treatment of hypoxic tumors.Herein,a new strategy for the preparation of efficient type I PSs by introducing the photoinduced electron transfer(PET)mechanism is reported.DR-NO_(2) is obtained by introducing 4-nitrobenzyl to(Z)-2-(5-(4-(diethylamino)-2-hydroxybenzylidene)-4-oxo-3-phenylthiazolidin-2-ylidene)malononitrile(DR-OH)with aggregation-induced emission(AIE)feature.The AIE feature ensures their high ROS generation efficiency in aggregate,and the PET process leads to fluorescence quenching of DR-NO_(2) to promote triplet state formation,which also promotes intramolecular charge separation and electron transfer that is conducive for type I ROS particularly superoxide radicals generation.In addition,DR-NO_(2) nanoparticles are prepared by nanoprecipitation to possess nanoscaled sizes,high cancer cell uptake,and excellent type I ROS generation ability,which results in an excellent performance in PDT ablation of MCF-7 cancer cells.This PET strategy for the development of type I PSs possesses great potential for PDT applications against hypoxic tumors.
基金supported by National Science Foundation of China under Grant No.61304097Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No.61321002Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1208
文摘In this paper,a sliding mode control with perturbation estimation(SMCPE) coupled with an inverse hysteresis compensator is proposed for the motion tracking control of a microposition system with piezoelectric actuation.The inverse hysteresis compensator is employed to cancel the hysteresis nonlinearity,thus reducing the nonlinear system to a linear system with an inversion error.Then,a SMCPE controller is adopted to deal with all the unmodeled dynamics and disturbances,aiming at improving the dynamic performance and the robustness of system.An experiment of a piezoelectric actuator is presented to demonstrate the feasibility and effectiveness of the proposed control scheme.The result shows that for a fast-rate control input,the proposed method is capable of leading to a good performance of system behavior.
基金supported by the National Natural Science Foundation of China(Grant No.61305025)
文摘In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper.First,Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator.Then,a real time block matching algorithm is researched and its block size is optimized with a standard object.Finally,experiments are performed with respect to a nanometer movement platform system,and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.