High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been pai...High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors' concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-ll-yl)-1,3,5-triazine (BCPICT), with thermally activated delayed fluorescent (TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%. When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m^2.展开更多
Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent ...Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.展开更多
We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) mate- rial of 4CzlPN, Which show better stability compared with the 4,4'-Bis(carbazol-9-yl)biphenyl ...We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) mate- rial of 4CzlPN, Which show better stability compared with the 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) based devices. The half lifetime of the device using 4CzlPN as host material has doubled, and a slower voltage rise compared with that of CBP-based devices has been achieved, which indicates the improvement of stability. We attribute the better sta- bility to the good film morphology and difficult crystallization property of 4CzlPN. Our results suggest that employing the 4CzlPN as host material can be a promising way of fabricating OLEDs with longer operation lifetime.展开更多
基金supported by the National Natural Science Foundation of China (51525304)the National Key Basic Research and Development Program of China (2015CB655002)
文摘High cost of phosphors and significant efficiency roll-off at high brightness are the two main factors that limit the wide application of phosphorescent organic light-emitting diodes (PHOLEDs). Efforts have been paid to find ways to reduce the phosphors' concentration and efficiency roll-off of PHOLEDs. In this work, we reported red emission PHOLEDs with low dopant concentration and low efficiency roll-off based on a novel host material 2,4-biscyanophenyl-6-(12-phenylindole[2,3-a]carbazole-ll-yl)-1,3,5-triazine (BCPICT), with thermally activated delayed fluorescent (TADF) properties. The device with 1.0% dopant concentration displayed a maximum external quantum efficiency of 10.7%. When the dopant concentration was increased to 2.0%, the device displayed a maximum external quantum efficiency of 10.5% and a low efficiency roll-off of 5.7% at 1000 cd/m^2.
基金supported by the National Natural Science Foundation of China(62004074,51727809)the Science and Technology Department of Hubei Province(2019AAA063,2020BAA016)。
文摘Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.
基金supported by the National High Technology Research and Development Program of China(No.2012AA011901)the National Basic Research Program of China(No.2012CB723406)+2 种基金the National Natural Science Foundation of China(No.51573036)the Fundamental Research Funds for the Central Universities of China(No.JD2016JGPY0007)the Industry-University-Research Cooperation Project of Aviation Industry Corporation of China(No.CXY2013HFGD20)
文摘We fabricated organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) mate- rial of 4CzlPN, Which show better stability compared with the 4,4'-Bis(carbazol-9-yl)biphenyl (CBP) based devices. The half lifetime of the device using 4CzlPN as host material has doubled, and a slower voltage rise compared with that of CBP-based devices has been achieved, which indicates the improvement of stability. We attribute the better sta- bility to the good film morphology and difficult crystallization property of 4CzlPN. Our results suggest that employing the 4CzlPN as host material can be a promising way of fabricating OLEDs with longer operation lifetime.