二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方...二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。展开更多
电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考...电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考虑材料二次电子和背散射电子发射电流,分析电推进产生等离子体充电电流特性,基于充放电平衡方程进行电推进等离子体及空间等离子体共同作用下的表面带电机理研究。研究结果表明:地磁亚暴时期,航天器表面受到地球同步轨道等离子体的影响,其表面电位可高达–10~4 k V;电推进工作时,其羽流等离子体充电电流为10-3 A/m^2,远大于空间等离子体充电电流,从而成为卫星表面带电的主要影响因素;同时电推进等离子体将航天器表面电位中和至–10 V,即电推进交换电荷返流可以有效缓解由空间等离子体造成的危害性表面充放电效应。展开更多
基金National Natural Science Foundation of China(No.62005042)。
文摘二维半导体过渡金属二硫属化物(transition metal dichalcogenide,TMD)具有独特的电学、光学和力学性能,在数字电路、光伏器件和能量存储等多个领域中具有巨大的应用潜力。通过表面掺杂控制TMD的电学性能为实现灵敏传感提供了有效的方法。本文开展了氧等离子体对二硫化钼(MoS_(2))掺杂特性的研究。首先,测试了MoS_(2)场效应晶体管(field-effect transistor,FET)的输运特性,发现氧等离子体处理对FET具有p型掺杂作用。随后,通过拉曼光谱研究了掺杂机制的成因,并证实了沟道表面类MoO_(3)缺陷的形成。最后,研究了经等离子体处理的晶体管的湿度传感特性,由于氧等离子体处理使得沟道对水分子的吸收中心增加,在潮湿环境下晶体管具有十分灵敏的响应特性,源漏电流值变化了约54%。这项工作不仅提供了一种调控TMD电学性能的简单方法,也展示了低维材料化学传感器的发展潜力。
文摘电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考虑材料二次电子和背散射电子发射电流,分析电推进产生等离子体充电电流特性,基于充放电平衡方程进行电推进等离子体及空间等离子体共同作用下的表面带电机理研究。研究结果表明:地磁亚暴时期,航天器表面受到地球同步轨道等离子体的影响,其表面电位可高达–10~4 k V;电推进工作时,其羽流等离子体充电电流为10-3 A/m^2,远大于空间等离子体充电电流,从而成为卫星表面带电的主要影响因素;同时电推进等离子体将航天器表面电位中和至–10 V,即电推进交换电荷返流可以有效缓解由空间等离子体造成的危害性表面充放电效应。