Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renew...Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy.The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation.Therefore,cocatalysts are necessary in boosting photocatalytic H2 evolution.To date,semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest,enhanced charge carrier separation efficiency and improved stability.This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution,the roles and mechanism of the cocatalysts are discussed in detail.The cocatalysts can be divided into the following categories:metal/alloy cocatalysts,metal phosphides cocatalysts,metal oxide/hydroxide cocatalysts,carbon-based cocatalysts,dual cocatalysts,Z-scheme cocatalysts and MOFs cocatalysts.The future research and forecast for photocatalytic hydrogen generation are also suggested.展开更多
Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water split...Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water splitting for hydrogen production in the past few years. This review summarizesthe very recent progress (mainly in the last 2–3 years) on three major types of solar hydrogenproduction systems: particulate photocatalysis (PC) systems, photoelectrochemical (PEC) systems,and photovoltaic‐photoelectrochemical (PV‐PEC) hybrid systems. The solar‐to‐hydrogen (STH)conversion efficiency of PC systems has recently exceeded 1.0% using a SrTiO3:La,Rh/Au/BiVO4:Mophotocatalyst, 2.5% for PEC water splitting on a tantalum nitride photoanode, and reached 22.4%for PV‐PEC water splitting using a multi‐junction GaInP/GaAs/Ge cell and Ni electrode hybrid system.The advantages and disadvantages of these systems for hydrogen production via solar watersplitting, especially for their potential demonstration and application in the future, are briefly describedand discussed. Finally, the challenges and opportunities for solar water splitting solutions are also forecasted.展开更多
Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating ...Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating tris(1,10-phenanthroline)eobalt(Ⅱ/Ⅲ)-based redox elec- trolyte and four synthesized organic dyes as photosensitizers are described. The photovoltaic performance of these dyes-sensitized solar cells employing the cobalt redox shuttle and the influences of the w-conjugated spacers of organic dyes upon the photovoltage and photocur- rent of mesoscopic titania solar cells are investigated. It is found that organic dyes with thiophene derivates as linkers are suitable for DSSCs employing cobalt electrolytes. DSSCs sensitized with the as-synthesized dyes in combination with the cobalt redox shuttle yield an overall power conversion efficiency of 6.1% under 100 mW/cm2 AM1.5 G illumination.展开更多
The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were...The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.展开更多
Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelect...Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelectrochemical(PEC)water splitting.However,its PEC performance is severely hindered owing to poor surface charge transfer,surface recombination at the photoanode/electrolyte junction,and sluggish oxygen evolution reaction(OER)kinetics.In this regard,a novel solution was developed in this study to address these issues by decorating the surface of BiVO_(4)with cobalt sulfide,whose attractive features such as low cost,high conductivity,and rapid charge-transfer ability assisted in improving the PEC activity of the BiVO_(4)photoanode.The fabricated photoanode exhibited a significantly enhanced photocurrent density of 3.2 m A cm^(-2)under illumination at 1.23 V vs.a reversible hydrogen electrode,which is more than 2.5 times greater than that of pristine BiVO_(4).Moreover,the Co S/BiVO_(4)photoanode also exhibited considerable improvements in the charge injection yield(75.8%vs.36.7%for the bare BiVO_(4)film)and charge separation efficiency(79.8%vs.66.8%for the pristine BiVO_(4)film).These dramatic enhancements were primarily ascribed to rapid charge-transport kinetics and efficient reduction of the anodic overpotential for oxygen evolution enabled by the surface modification of BiVO_(4)by Co S.This study provides valuable suggestions for designing efficient photocatalysts via surface modification to improve the PEC performance.展开更多
Constructing bismuth oxyhalide solid solutions with a single homogeneous phase have intrigued the research community;however,a deeper understanding of the intrinsic origin for improved bulk-charge separation is still ...Constructing bismuth oxyhalide solid solutions with a single homogeneous phase have intrigued the research community;however,a deeper understanding of the intrinsic origin for improved bulk-charge separation is still unclear.Herein,a series of Bi_(24)O_(31)Cl_(x)Br_(10-x) solid solutions with the same structural characteristics were synthesized by crystal structure regulation.Combining density functional theory calculation,Kelvin probe force microscopy,and zeta potential testing results,an enhanced internal electric field(IEF)intensity between[Bi_(24)O_(31)]and[X]layers was achieved by changing halogen types and ratios.This greatly facilitated bulk-charge separation and transfer efficiency,which is significant for the degradation of phenolic organic pollutants.Owing to the enhanced IEF intensity,the charge carrier density of Bi_(24)O_(31)Cl_(4)Br_(6) was 33.1 and 4.7 times stronger than that of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Therefore,Bi24O31Cl4Br6 had an optimal photoactivity for the degradation of bisphenol A,which was 6.21 and 2.71 times higher than those of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Thus,this study revealed the intrinsic mechanism of the solid solution strategy for photocatalytic performance enhancement with respect to an IEF.展开更多
Investigation of the charge dynamics and roles of cocatalysts is crucial for understanding the reaction of photocatalytic water splitting on semiconductor photocatalysts.In this work,the dynamics of photogenerated ele...Investigation of the charge dynamics and roles of cocatalysts is crucial for understanding the reaction of photocatalytic water splitting on semiconductor photocatalysts.In this work,the dynamics of photogenerated electrons in Ga_(2)O_(3) loaded with Cr_(2)O_(3)-Rh cocatalysts was studied using time-resolved mid-infrared spectroscopy.The structure of these Cr_(2)O_(3)-Rh cocatalysts was identified with high-resolution transmission electron microscopy and CO adsorption Fourier-transform infrared spectroscopy,as Rh particles partly covered with Cr_(2)O_(3).The decay dynamics of photogenerated electrons reveals that only the electrons trapped by the Rh particles efficiently participate in the H2 evolution reaction.The loaded Cr_(2)O_(3) promotes electron transfer from Ga_(2)O_(3) to Rh,which accelerates the electron-consuming reaction for H2 evolution.Based on these observations,a photocatalytic water-splitting mechanism for Cr_(2)O_(3)-Rh/Ga_(2)O_(3) photocatalysts has been proposed.The elucidation of the roles of the Cr_(2)O_(3)-Rh cocatalysts aids in further understanding the reaction mechanisms of photocatalytic water splitting and guiding the development of improved photocatalysts.展开更多
Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which shoul...Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which should possess small bandgap to ensure wide light harvest, facile charge separation to allow the generated photocharges migrating to the reactive sites and highly catalytic capability to fully utilize the separated photocharges. Proper electrode fabrication method is of equal importance for promoting charge transfer and accelerating surface reactions in the electrodes. Moreover,powerful characterization method can shed light on the complex PEC process and provide deep understanding of the rate-determining step for us to improve the PEC systems further. Targeting on high solar conversion efficiency, here we provide a review on the development of PEC water splitting in the aspect of materials exploring, fabrication method and characterization. It is expected to provide some fundamental insight of PEC and inspire the design of more effective PEC systems.展开更多
An efficient photocatalytic CO_(2) reduction has been reported in ZIF-67-derived-Co nanoparticles(NPs)encapsulated in nitrogen-doped carbon layers(N-C/Co).This work demonstrates that the pyrolysis temperature is cruci...An efficient photocatalytic CO_(2) reduction has been reported in ZIF-67-derived-Co nanoparticles(NPs)encapsulated in nitrogen-doped carbon layers(N-C/Co).This work demonstrates that the pyrolysis temperature is crucial in tuning the grain size and components of metallic Co^(0) of N-C/Co composite catalysts,which optimizes their photocatalytic activities.Syntheses were conducted at 600,700,and 800℃ giving the N-C/Co-600,N-C/Co-700,and N-C/Co-800 samples,respectively.N-C layers can well wrap the Co NPs obtained at a low pyrolysis temperature(600℃)owing to their smaller grains than those of other samples.A high metallic Co^(0) content in the N-C/Co-600 sample can be attributed to the effective inhibition of surface oxidation.By contrast,the surface CoOx oxides in the N-C/Co-700 and N-C/Co-800 samples cover inside Co cores,inhibiting charge separation and transfer.As a result,the N-C/Co-600 sample yields the best photocatalytic activity.The carbon monoxide and hydrogen generation rates are as high as 1.62×10^(4) and 2.01×10^(4)μmol g^(−1)h^(−1),respectively.Additionally,the Co NPs make composite catalysts magnetic,enabling rapid and facile recovery of catalysts with the assistance of an external magnetic field.This work is expected to provide an instructive guideline for designing metal-organic framework-derived carbon/metal composite catalysts.展开更多
LaTaON_(2)is an attractive visible-light-active photocatalyst for water splitting due to its broad visible light absorption as far as 650 nm and proper band edge positions.Notwithstanding these promising properties,La...LaTaON_(2)is an attractive visible-light-active photocatalyst for water splitting due to its broad visible light absorption as far as 650 nm and proper band edge positions.Notwithstanding these promising properties,LaTaON_(2)generally exhibits poor photocatalytic activity because of its high defect concentration that severely hinders charge separation.Here,LaTaON_(2)has been modified by doping Al into the Ta sublattice,i.e.,LaTa_(1−x)Al_(x)O_(1+y)N_(2−y)(0≤x≤0.20).Al doping not only inhibits the defect concentration and increases surface hydrophilicity but also maintains the desired visible light absorption of LaTaON_(2).These important modifications substantially ameliorate the charge separation conditions within LaTaON_(2)and are responsible for a much enhanced photocatalytic performance for water redox reactions under visible light illumination.Under optimal conditions,the Al-doped LaTaON_(2)delivers an apparent quantum efficiency of 1.17%at 420±20 nm for water oxidation into O_(2),outperforming most LaTaON_(2)-based photocatalysts.These findings highlight Al as a useful dopant to open up the photocatalytic potential of metal oxynitrides whose activity is often undermined by a high defect concentration.展开更多
The AFLT states|PY1,Y2has reflection symmetry,Sn|PY1,Y2=|PY2,Y2,nb=2P,where S is the screening charge.AFLT state can be constructed using this reflect symmetry.We propose a recursion formula for this construction.The ...The AFLT states|PY1,Y2has reflection symmetry,Sn|PY1,Y2=|PY2,Y2,nb=2P,where S is the screening charge.AFLT state can be constructed using this reflect symmetry.We propose a recursion formula for this construction.The recursion formula is factorized completely.展开更多
Artificial Z-scheme photocatalytic systems have received considerable attention in recent years because they can achieve wide light-absorption, high charge-separation efficiency, and strong redox ability simultaneousl...Artificial Z-scheme photocatalytic systems have received considerable attention in recent years because they can achieve wide light-absorption, high charge-separation efficiency, and strong redox ability simultaneously. Nevertheless, it is still challenging to exploit low-cost and stable Zscheme photocatalysts with highly-efficient H2 evolution from solar water-splitting so far. Herein, we report a novel all-solidstate Z-scheme photocatalyst Cd1-xZnxS@WO3-x consisting of Cd1-xZnxS nanorods coated with oxygen-deficient WO3-x amorphous layers. The Cd1-xZnxS@WO3-x exhibits an outstanding H2 evolution reaction(HER) activity as compared with Pt-loaded Cd1-xZnxS and most WO3- and Cd S-based photocatalysts, due to the generation of stronger reducing electrons through the appropriate Zn-doping in Cd1-xZnxS and the enhanced charge transfer by introducing oxygen vacancies(W^5+/OVs) into the ultrathin WO3-x amorphous coatings. The optimal HER rate of Cd1-xZnxS@WO3- xis determined to be 21.68 mmol h^-1 g^-1, which is further raised up to 28.25 mmol h^-1 g^-1(about 12 times more than that of Pt/Cd1-xZnxS) when Cd1-xZnxS@WO3-x is hybridized by Co Ox and Ni Oxdual cocatalysts(Cd1-xZnxS@WO3-x/CoOx/NiOx)through in-situ photo-deposition. Moreover, the corresponding apparent quantum yield(AQY) at 420 nm is significantly increased from 34.6% for Cd1-xZnxS@WO3-x to 60.8% for Cd1-xZnxS@WO3-x/CoOx/NiOx. In addition, both Cd1-xZnxS@WO3-x and Cd1-xZnxS@WO3-x/CoOx/NiOx demonstrate good stability towards HER. The results displayed in this work will inspire the rational design and synthesis of high-performance nanostructures for photocatalytic applications.展开更多
The complete band representations(BRs)have been constructed in the work of topological quantum chemistry.Each BR is expressed by either a localized orbital at a Wyckoff site in real space,or by a set of irreducible re...The complete band representations(BRs)have been constructed in the work of topological quantum chemistry.Each BR is expressed by either a localized orbital at a Wyckoff site in real space,or by a set of irreducible representations in momentum space.In this work,we define unconventional materials with a common feature of the mismatch between average electronic centers and atomic positions.They can be effectively diagnosed as whose occupied bands can be expressed as a sum of elementary BRs(eBRs),but not a sum of atomic-orbital-induced BRs(aBRs).The existence of an essential BR at an empty site is described by nonzero real-space invariants(RSIs).The"valence"states can be derived by the aBR decomposition,and unconventional materials are supposed to have an uncompensated total"valence"state.The high-throughput screening for unconventional materials has been performed through the first-principles calculations.We have discovered 423 unconventional compounds,including thermoelectronic materials,higher-order topological insulators,electrides,hydrogen storage materials,hydrogen evolution reaction electrocatalysts,electrodes,and superconductors.The diversity of these interesting properties and applications would be widely studied in the future.展开更多
基金financially supported by the National Natural Science Foundation of China(51572295,21273285 and 21003157)Beijing Nova Program(2008B76)Science Foundation of China University of Petroleum,Beijing(KYJJ2012-06-20 and 2462016YXBS05)~~
文摘Photocatalytic hydrogen(H2)evolution via water spilling over semiconductors has been considered to be one of the most promising strategies for sustainable energy supply in the future to provide non-pollution and renewable energy.The key to efficient conversion of solar-chemical energy is the design of an efficient structure for high charge separation and transportation.Therefore,cocatalysts are necessary in boosting photocatalytic H2 evolution.To date,semiconductor photocatalysts have been modified by various cocatalysts due to the extended light harvest,enhanced charge carrier separation efficiency and improved stability.This review focuses on recent developments of cocatalysts in photocatalytic H2 evolution,the roles and mechanism of the cocatalysts are discussed in detail.The cocatalysts can be divided into the following categories:metal/alloy cocatalysts,metal phosphides cocatalysts,metal oxide/hydroxide cocatalysts,carbon-based cocatalysts,dual cocatalysts,Z-scheme cocatalysts and MOFs cocatalysts.The future research and forecast for photocatalytic hydrogen generation are also suggested.
基金supported by the National Basic Research Program of the Ministry of Science and Technology (973 Program, 2014CB239400)the National Natural Science Foundation of China (21501236, 21673230)Youth Innovation Promotion Association of Chinese Academy of Sciences (2016167)~~
文摘Hydrogen production via solar water splitting is regarded as one of the most promising ways to utilize solar energy and has attracted more and more attention. Great progress has been made on photocatalytic water splitting for hydrogen production in the past few years. This review summarizesthe very recent progress (mainly in the last 2–3 years) on three major types of solar hydrogenproduction systems: particulate photocatalysis (PC) systems, photoelectrochemical (PEC) systems,and photovoltaic‐photoelectrochemical (PV‐PEC) hybrid systems. The solar‐to‐hydrogen (STH)conversion efficiency of PC systems has recently exceeded 1.0% using a SrTiO3:La,Rh/Au/BiVO4:Mophotocatalyst, 2.5% for PEC water splitting on a tantalum nitride photoanode, and reached 22.4%for PV‐PEC water splitting using a multi‐junction GaInP/GaAs/Ge cell and Ni electrode hybrid system.The advantages and disadvantages of these systems for hydrogen production via solar watersplitting, especially for their potential demonstration and application in the future, are briefly describedand discussed. Finally, the challenges and opportunities for solar water splitting solutions are also forecasted.
基金This work was supported by the National Natu- ral Science Foundation of China (No.21072152 and No.21101115).
文摘Developing photosensitizers suitable for the cobalt electrolyte and understanding the structure-property relationship of organic dyes is warranted for the dye-sensitized solar cells (DSSCs). The DSSCs incorporating tris(1,10-phenanthroline)eobalt(Ⅱ/Ⅲ)-based redox elec- trolyte and four synthesized organic dyes as photosensitizers are described. The photovoltaic performance of these dyes-sensitized solar cells employing the cobalt redox shuttle and the influences of the w-conjugated spacers of organic dyes upon the photovoltage and photocur- rent of mesoscopic titania solar cells are investigated. It is found that organic dyes with thiophene derivates as linkers are suitable for DSSCs employing cobalt electrolytes. DSSCs sensitized with the as-synthesized dyes in combination with the cobalt redox shuttle yield an overall power conversion efficiency of 6.1% under 100 mW/cm2 AM1.5 G illumination.
文摘The characteristics of electric charge and molecular weight distribution,oxidation-reduction regimes,e.g.Eh and amounts of organic reducing substances produced by milk vetch during anaerobic decomposition process,were studied by using electrochemical methods.Interaction between soils and organic reducing substances was also observed.The results indicate that the organic reducing substances were mainly the organic compounds with negative and amphoteric charges,which were distributed in two groups at anodic peak potentials of 0.25 and 0.69 volt in differential pulse voltammograms,respectively.Their apparent molecular weights are all less than 700 daltons,in which those active in oxidation-reducion reaction were distributed in the fraction with apparent molecular weight less than 200 daltons.The organic reduction substances can be oxidized by manganese oxides in their interaction with soils.
文摘Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues.Bismuth vanadate(BiVO_(4))is photoanode material with tremendous potential for photoelectrochemical(PEC)water splitting.However,its PEC performance is severely hindered owing to poor surface charge transfer,surface recombination at the photoanode/electrolyte junction,and sluggish oxygen evolution reaction(OER)kinetics.In this regard,a novel solution was developed in this study to address these issues by decorating the surface of BiVO_(4)with cobalt sulfide,whose attractive features such as low cost,high conductivity,and rapid charge-transfer ability assisted in improving the PEC activity of the BiVO_(4)photoanode.The fabricated photoanode exhibited a significantly enhanced photocurrent density of 3.2 m A cm^(-2)under illumination at 1.23 V vs.a reversible hydrogen electrode,which is more than 2.5 times greater than that of pristine BiVO_(4).Moreover,the Co S/BiVO_(4)photoanode also exhibited considerable improvements in the charge injection yield(75.8%vs.36.7%for the bare BiVO_(4)film)and charge separation efficiency(79.8%vs.66.8%for the pristine BiVO_(4)film).These dramatic enhancements were primarily ascribed to rapid charge-transport kinetics and efficient reduction of the anodic overpotential for oxygen evolution enabled by the surface modification of BiVO_(4)by Co S.This study provides valuable suggestions for designing efficient photocatalysts via surface modification to improve the PEC performance.
文摘Constructing bismuth oxyhalide solid solutions with a single homogeneous phase have intrigued the research community;however,a deeper understanding of the intrinsic origin for improved bulk-charge separation is still unclear.Herein,a series of Bi_(24)O_(31)Cl_(x)Br_(10-x) solid solutions with the same structural characteristics were synthesized by crystal structure regulation.Combining density functional theory calculation,Kelvin probe force microscopy,and zeta potential testing results,an enhanced internal electric field(IEF)intensity between[Bi_(24)O_(31)]and[X]layers was achieved by changing halogen types and ratios.This greatly facilitated bulk-charge separation and transfer efficiency,which is significant for the degradation of phenolic organic pollutants.Owing to the enhanced IEF intensity,the charge carrier density of Bi_(24)O_(31)Cl_(4)Br_(6) was 33.1 and 4.7 times stronger than that of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Therefore,Bi24O31Cl4Br6 had an optimal photoactivity for the degradation of bisphenol A,which was 6.21 and 2.71 times higher than those of Bi_(24)O_(31)Cl_(10) and Bi_(24)O_(31)Br_(10),respectively.Thus,this study revealed the intrinsic mechanism of the solid solution strategy for photocatalytic performance enhancement with respect to an IEF.
文摘Investigation of the charge dynamics and roles of cocatalysts is crucial for understanding the reaction of photocatalytic water splitting on semiconductor photocatalysts.In this work,the dynamics of photogenerated electrons in Ga_(2)O_(3) loaded with Cr_(2)O_(3)-Rh cocatalysts was studied using time-resolved mid-infrared spectroscopy.The structure of these Cr_(2)O_(3)-Rh cocatalysts was identified with high-resolution transmission electron microscopy and CO adsorption Fourier-transform infrared spectroscopy,as Rh particles partly covered with Cr_(2)O_(3).The decay dynamics of photogenerated electrons reveals that only the electrons trapped by the Rh particles efficiently participate in the H2 evolution reaction.The loaded Cr_(2)O_(3) promotes electron transfer from Ga_(2)O_(3) to Rh,which accelerates the electron-consuming reaction for H2 evolution.Based on these observations,a photocatalytic water-splitting mechanism for Cr_(2)O_(3)-Rh/Ga_(2)O_(3) photocatalysts has been proposed.The elucidation of the roles of the Cr_(2)O_(3)-Rh cocatalysts aids in further understanding the reaction mechanisms of photocatalytic water splitting and guiding the development of improved photocatalysts.
基金supported by the Australian Research Council through its Discovery Project (DP)Federation Fellowship (FF) Program
文摘Photoelectorchemical(PEC) water splitting is an attractive approach for producing sustainable and environment-friendly hydrogen. An efficient PEC process is rooted in appropriate semiconductor materials, which should possess small bandgap to ensure wide light harvest, facile charge separation to allow the generated photocharges migrating to the reactive sites and highly catalytic capability to fully utilize the separated photocharges. Proper electrode fabrication method is of equal importance for promoting charge transfer and accelerating surface reactions in the electrodes. Moreover,powerful characterization method can shed light on the complex PEC process and provide deep understanding of the rate-determining step for us to improve the PEC systems further. Targeting on high solar conversion efficiency, here we provide a review on the development of PEC water splitting in the aspect of materials exploring, fabrication method and characterization. It is expected to provide some fundamental insight of PEC and inspire the design of more effective PEC systems.
基金financially supported by the National Key Research and Development Program of China(2020YFA0710303)the National Natural Science Foundation of China(51972061,U1905215 and 52072076)。
文摘An efficient photocatalytic CO_(2) reduction has been reported in ZIF-67-derived-Co nanoparticles(NPs)encapsulated in nitrogen-doped carbon layers(N-C/Co).This work demonstrates that the pyrolysis temperature is crucial in tuning the grain size and components of metallic Co^(0) of N-C/Co composite catalysts,which optimizes their photocatalytic activities.Syntheses were conducted at 600,700,and 800℃ giving the N-C/Co-600,N-C/Co-700,and N-C/Co-800 samples,respectively.N-C layers can well wrap the Co NPs obtained at a low pyrolysis temperature(600℃)owing to their smaller grains than those of other samples.A high metallic Co^(0) content in the N-C/Co-600 sample can be attributed to the effective inhibition of surface oxidation.By contrast,the surface CoOx oxides in the N-C/Co-700 and N-C/Co-800 samples cover inside Co cores,inhibiting charge separation and transfer.As a result,the N-C/Co-600 sample yields the best photocatalytic activity.The carbon monoxide and hydrogen generation rates are as high as 1.62×10^(4) and 2.01×10^(4)μmol g^(−1)h^(−1),respectively.Additionally,the Co NPs make composite catalysts magnetic,enabling rapid and facile recovery of catalysts with the assistance of an external magnetic field.This work is expected to provide an instructive guideline for designing metal-organic framework-derived carbon/metal composite catalysts.
基金the National Natural Science Foundation of China(51972233 and 52172225)the Natural Science Foundation of Shanghai(19ZR1459200)+1 种基金the Science and Technology Commission of Shanghai Municipality(19DZ2271500)the Fundamental Research Funds for the Central Universities.
文摘LaTaON_(2)is an attractive visible-light-active photocatalyst for water splitting due to its broad visible light absorption as far as 650 nm and proper band edge positions.Notwithstanding these promising properties,LaTaON_(2)generally exhibits poor photocatalytic activity because of its high defect concentration that severely hinders charge separation.Here,LaTaON_(2)has been modified by doping Al into the Ta sublattice,i.e.,LaTa_(1−x)Al_(x)O_(1+y)N_(2−y)(0≤x≤0.20).Al doping not only inhibits the defect concentration and increases surface hydrophilicity but also maintains the desired visible light absorption of LaTaON_(2).These important modifications substantially ameliorate the charge separation conditions within LaTaON_(2)and are responsible for a much enhanced photocatalytic performance for water redox reactions under visible light illumination.Under optimal conditions,the Al-doped LaTaON_(2)delivers an apparent quantum efficiency of 1.17%at 420±20 nm for water oxidation into O_(2),outperforming most LaTaON_(2)-based photocatalysts.These findings highlight Al as a useful dopant to open up the photocatalytic potential of metal oxynitrides whose activity is often undermined by a high defect concentration.
基金Supported by Program "Frontier Topics in Mathematical Physics"(KJCX3-SYW-S03)National Natural Science Foundation of China under Grant No.11035008
文摘The AFLT states|PY1,Y2has reflection symmetry,Sn|PY1,Y2=|PY2,Y2,nb=2P,where S is the screening charge.AFLT state can be constructed using this reflect symmetry.We propose a recursion formula for this construction.The recursion formula is factorized completely.
基金financially supported by the National Natural Science Foundation of China (51572136, 51772162, 21571112, 51802170 and 21801150)the Natural Science Foundation of Shandong Province (ZR2018BEM014, ZR2018LB008 andZR2019MB001)+2 种基金Taishan Scholar Foundation of Shandong Province (H. W., ts201712047)the Special Fund Project to Guide Development of Local Science and Technology by Central Government (H.W.)Taishan Scholar Program of Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology
文摘Artificial Z-scheme photocatalytic systems have received considerable attention in recent years because they can achieve wide light-absorption, high charge-separation efficiency, and strong redox ability simultaneously. Nevertheless, it is still challenging to exploit low-cost and stable Zscheme photocatalysts with highly-efficient H2 evolution from solar water-splitting so far. Herein, we report a novel all-solidstate Z-scheme photocatalyst Cd1-xZnxS@WO3-x consisting of Cd1-xZnxS nanorods coated with oxygen-deficient WO3-x amorphous layers. The Cd1-xZnxS@WO3-x exhibits an outstanding H2 evolution reaction(HER) activity as compared with Pt-loaded Cd1-xZnxS and most WO3- and Cd S-based photocatalysts, due to the generation of stronger reducing electrons through the appropriate Zn-doping in Cd1-xZnxS and the enhanced charge transfer by introducing oxygen vacancies(W^5+/OVs) into the ultrathin WO3-x amorphous coatings. The optimal HER rate of Cd1-xZnxS@WO3- xis determined to be 21.68 mmol h^-1 g^-1, which is further raised up to 28.25 mmol h^-1 g^-1(about 12 times more than that of Pt/Cd1-xZnxS) when Cd1-xZnxS@WO3-x is hybridized by Co Ox and Ni Oxdual cocatalysts(Cd1-xZnxS@WO3-x/CoOx/NiOx)through in-situ photo-deposition. Moreover, the corresponding apparent quantum yield(AQY) at 420 nm is significantly increased from 34.6% for Cd1-xZnxS@WO3-x to 60.8% for Cd1-xZnxS@WO3-x/CoOx/NiOx. In addition, both Cd1-xZnxS@WO3-x and Cd1-xZnxS@WO3-x/CoOx/NiOx demonstrate good stability towards HER. The results displayed in this work will inspire the rational design and synthesis of high-performance nanostructures for photocatalytic applications.
基金supported by the National Natural Science Foundation of China(11974395 and 12188101)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB33000000)+6 种基金the Center for Materials Genomesupport from the Ministry of Science and Technology of China under Grant Nos.2016YFA0300600 and 2018YFA0305700the Chinese Academy of Sciences under Grant No.XDB28000000the Science Challenge Project(TZ2016004)the K.C.Wong Education Foundation(GJTD-2018-01)Beijing Municipal Science&Technology Commission(Z181100004218001)Beijing Natural Science Foundation(Z180008)。
文摘The complete band representations(BRs)have been constructed in the work of topological quantum chemistry.Each BR is expressed by either a localized orbital at a Wyckoff site in real space,or by a set of irreducible representations in momentum space.In this work,we define unconventional materials with a common feature of the mismatch between average electronic centers and atomic positions.They can be effectively diagnosed as whose occupied bands can be expressed as a sum of elementary BRs(eBRs),but not a sum of atomic-orbital-induced BRs(aBRs).The existence of an essential BR at an empty site is described by nonzero real-space invariants(RSIs).The"valence"states can be derived by the aBR decomposition,and unconventional materials are supposed to have an uncompensated total"valence"state.The high-throughput screening for unconventional materials has been performed through the first-principles calculations.We have discovered 423 unconventional compounds,including thermoelectronic materials,higher-order topological insulators,electrides,hydrogen storage materials,hydrogen evolution reaction electrocatalysts,electrodes,and superconductors.The diversity of these interesting properties and applications would be widely studied in the future.