The electrical potential distribution for a charged surface in an electrolyte solution at equilibrium is described by the Poisson-Boltzmann equation. For spherical particle, it is (d2y)/(dX2)+2/X(dy)/(dX) =sin...The electrical potential distribution for a charged surface in an electrolyte solution at equilibrium is described by the Poisson-Boltzmann equation. For spherical particle, it is (d2y)/(dX2)+2/X(dy)/(dX) =sinhy, where y is a normalized electrostatic potential, defined as y=eψ/(kT), and ψ is the electrostatic potential. X is a normalized distance from the sphere center with radius a. X=ka+kx=ka+ξ. In this paper a flat-plate approximation method is proposed for the resolution of the PB equation. By using the extended Langmuir′s method, PB equation is changed to (d2y)/(dζ2)=1/2ey-2/(ka)ey-1. Performing the integration we obtain the relationship between the surface charge density and surface potential for a spherical colloidal particle with a high surface potential. I=-(dy/dζ)<sup>ζ=0 =ey0/2 +{4/(ka)}. Thus the surface excess of co-ions and the double-layer free energy are easily derived. The success of the flat-plate approximation depends so strongly on the value of surface potential y0 and the radius of curvature of the spherical particle. When the surface potential increases even if the radius of curvature is relatively small, the flat-plate approximation is also satisfactory approximations for the sphere. It explains why the present expressions are applicable to spherical particles with a high surface potential. These expressions are shown to be satisfactory approximations to exact numerical values.展开更多
Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and ...Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.展开更多
Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion va...Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.展开更多
The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were trea...The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.展开更多
Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethyl...Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethylene glycol, ethanol, n-propanol and glycerol were used as organic solutes; meanwhile 0.001mol-dm^-3 aqueous KCl solution was utilized as a strong electrolyte to measure the electrical difference. Equilibrium swelling degree indicated that it could be affected by the density of organic solutes; while it enhanced with the increasing density of these solutes. The measurement of fixed charge density showed that the membrane had the maximal absolute value in water among these solvents whether for cationic or anionic groups; the difference of dielectric constant between the water and the organic solutes might be responsible for these change trends. It was confirmed that membrane potentials increased with both the increasing concentration of the organic solutions and the elevated pH values. These results demonstrated that the characteristics of the hybrid charged mosaic membrane could be highly impacted by the properties of the organic solutes. A theoretical modal for charged membranes in ternary ion systems of weak electrolyte can be used to explain the above-mentioned phenomena.展开更多
t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves...t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the longrange Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.展开更多
Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving an...Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving and diffusion. In the present work, a model based onirreversible thermodynamics is extended and used to estimate rejection of inorganic salts andorganic substances. Binary systems are modeled, where the feed contains an ion that is much lesspermeable to the membrane as compared with the other ion. The two model parameters are estimated byfitting the model to the experimental data. Variation of these parameters with the composition ofthe feed is described by an empirical correlation. This work attempts to describe transport throughthe nanofiltration membranes by a simple model.展开更多
Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulatio...Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge(LPC) on different types of lightning. The results show:(1) The LPC plays a key role in generating negative cloud-to-ground(CG) flashes and inverted intra-cloud(IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning.(2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed.(3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning.(4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.展开更多
The electrochemical behaviors of battery chemistry,especially the operating voltage,are greatly affected by the complex electrode/electrolyte interface,but the corresponding basis understanding is still largely unclea...The electrochemical behaviors of battery chemistry,especially the operating voltage,are greatly affected by the complex electrode/electrolyte interface,but the corresponding basis understanding is still largely unclear.Herein,the concept of regulating electrode potential by interface thermodynamics is proposed,which guides the improvement of the energy density of Zn-MnO_(2) battery.A cationic electrolyte strategy is adopted to adjust the charge density of electrical double layer,as well as entropy change caused by desolvation,thus,achieving an output voltage of 1.6 V(vs.Zn^(2+)/Zn)and a capacity of 400 mAh g^(-1).The detailed energy storage behaviors are also analyzed in terms of crystal field and energy level splitting.Furthermore,the electrolyte optimization benefits the efficient operation of Zn-MnO_(2) battery by enabling a high energy density of 532 Wh kg^(-1) based on the mass of cathode and a long cyclic life of more than 500 cycles.This work provides a path for designing high-energy-density aqueous battery via electrolyte strategy,which is expected to be extended to other battery systems.展开更多
By using the surface photovoltage (SPV) technique based on a lock-in amplifier, surface states located 3.1 eV below the conduction band of TiO_(2) have been detected in TiO_(2) nanotube arrays prepared by anodization ...By using the surface photovoltage (SPV) technique based on a lock-in amplifier, surface states located 3.1 eV below the conduction band of TiO_(2) have been detected in TiO_(2) nanotube arrays prepared by anodization of titanium foil in fluoride-based ethylene glycol solution. The photo-induced charge transportation behavior of TiO_(2) nanotube arrays was also studied by quali- tatively analyzing their SPV phase spectra measured under different external bias. When a negative bias was applied, carriers excited from surface states have the same transportation properties as those excited from the valence band; in contrast, when a positive bias was applied, these two kinds of photo-excited carriers exhibit different transportation behavior..展开更多
文摘The electrical potential distribution for a charged surface in an electrolyte solution at equilibrium is described by the Poisson-Boltzmann equation. For spherical particle, it is (d2y)/(dX2)+2/X(dy)/(dX) =sinhy, where y is a normalized electrostatic potential, defined as y=eψ/(kT), and ψ is the electrostatic potential. X is a normalized distance from the sphere center with radius a. X=ka+kx=ka+ξ. In this paper a flat-plate approximation method is proposed for the resolution of the PB equation. By using the extended Langmuir′s method, PB equation is changed to (d2y)/(dζ2)=1/2ey-2/(ka)ey-1. Performing the integration we obtain the relationship between the surface charge density and surface potential for a spherical colloidal particle with a high surface potential. I=-(dy/dζ)<sup>ζ=0 =ey0/2 +{4/(ka)}. Thus the surface excess of co-ions and the double-layer free energy are easily derived. The success of the flat-plate approximation depends so strongly on the value of surface potential y0 and the radius of curvature of the spherical particle. When the surface potential increases even if the radius of curvature is relatively small, the flat-plate approximation is also satisfactory approximations for the sphere. It explains why the present expressions are applicable to spherical particles with a high surface potential. These expressions are shown to be satisfactory approximations to exact numerical values.
基金Supported by the Special Funds of Technological Development for Scientific Research Institutes from the Ministry of Science and Technology of China(2010EG111022,2011EG111307,2012EG111122)the Program for Overseas Talents(OTP-2013-015)the Program for Innovative Research Team(IG201204N)from Beijing Academy of Science and Technology
文摘Coagulation mechanisms of polyaluminum chloride(PACl) at various dosages were studied using a conventional jar test at different final and initial pH values during treating kaolin suspension. The optimal final pH and dosages for PACl were obtained based on residual turbidity and zeta potential of flocs. The coagulation zones at various PACl dosages and solution p H values were developed and compared with those of alum. It is found that the optimal mechanism under acidic condition is charge neutralization, while alkaline condition will facilitate the coagulation of PACl. Both charge neutralization coagulation and sweep coagulation can achieve high coagulation efficiency under the alkaline condition ranging from final p H 7.0 to 10.0. Stabilization, charge neutralization destabilization, restabilization and sweep zones occur successively with increasing PACl dosages with the final p H values fixed at 7.0 and 8.0, but restabilization zone disappears at final p H 10.0. When the final p H is not controlled and consequently decreases with increasing PACl dosage, no typical sweep zone can be observed and the coagulant efficiency decreases at high PACl dosage. It seems that the final pH is more meaningful than the initial p H for coagulation. Charge neutralization coagulation efficiency is dominated by zeta potential of flocs and PACl precipitates. The charge neutralization and sweep coagulation zones of PACl are broader in the ranges of coagulant dosage and p H than those of alum. The results are helpful for us to treat water and wastewater using PACl and to understand the coagulation process of PACl.
基金Project(20776161)supported by the National Natural Science Foundation of China
文摘Polysulfone(PS)hollow-fiber ultrafiltration membrane was characterized combined with flux and streaming potential in single electrolyte solutions.The effects of trans-membrane pressure,electrolyte concentration,ion valence and pH value of electrolyte solution on the streaming potential(SP)of the membrane were investigated.The zeta potential and surface charge density of the membrane were calculated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory.The results indicate that the valence and concentration of cation have a greater influence on the SP and surface charge density of PS membrane than those of anion,and the pH value of electrolyte solution has great effects on the SP and zeta potential of the membrane surface. Both the absolute value of the streaming potential and water flux of the adsorbed membrane decrease,compared with those of the clean membrane.The streaming potential and flux of the cleaned membrane can be completely recovered by cleaning with the mass fraction of 0.8%EDTA at pH=10.
基金Project supported by the National Natural Science Fundation of China
文摘The zero point of charge (ZPC) and the remaining charge σp at ZPC are two important parameters characterizing surface charge of red soils.Fourteen red soil samples of different soil type and parent material were treated with dithionite-citrate-dicarbonate (DCB) and Na2CO3 respectively.ZPC and σp of the samples in three indifferent electrolytes (NaCl,Na2SO4,and NaH2PO4) were determined.Kaolinite was used as reference.The results showed that ZPC of red soils was affected by the composition of parent materials and clay minerals and in significantly positive correlation with the content of total iron oxide (Fet),free iron oxide (Fed),amorphous iron oxide (Feo),aluminum oxide (Alo) and clay,but it was negatively correlated with the content of total silica (Sit).The σp of red soils was also markedly influenced by mineral components.Organic components were also contributing factor to the value of σp.The surface charges of red soils were evidently affected by the constitution of the electrolytes.Specific adsorption of anions in the electrolytes tended to make the ZPC of red soils shift to a higher pH value and to increase positive surface charges of the soils,thus leading to change of the σp value and decrease of the remaining net negative charges,even to the soils becoming net positive charge carriers.The effect of phosphate anion was greater than that of sulfate ion.
基金Supported by the National Natural Science Foundation of China (No.20576130) and the National Basic Research Program of China (973 program, No.2003CB615700), and the Innovation Fund for the Graduate Students of USTC (No. KD2005022).
文摘Membrane potentials across hybrid charged mosaic membrane in organic solutions were measured. Equilibrium swelling degree (SD) and fixed charge density in both organic solutions and water were also determined. Ethylene glycol, ethanol, n-propanol and glycerol were used as organic solutes; meanwhile 0.001mol-dm^-3 aqueous KCl solution was utilized as a strong electrolyte to measure the electrical difference. Equilibrium swelling degree indicated that it could be affected by the density of organic solutes; while it enhanced with the increasing density of these solutes. The measurement of fixed charge density showed that the membrane had the maximal absolute value in water among these solvents whether for cationic or anionic groups; the difference of dielectric constant between the water and the organic solutes might be responsible for these change trends. It was confirmed that membrane potentials increased with both the increasing concentration of the organic solutions and the elevated pH values. These results demonstrated that the characteristics of the hybrid charged mosaic membrane could be highly impacted by the properties of the organic solutes. A theoretical modal for charged membranes in ternary ion systems of weak electrolyte can be used to explain the above-mentioned phenomena.
文摘t We propose theoretical schemes to generate highly entangled cluster state with superconducting qubits in a circuit QED architecture. Charge qubits are located inside a superconducting transmission line, which serves as a quantum data bus. We show that large clusters state can be efficiently generated in just one step with the longrange Ising-like unitary operators. The quantum operations which are generally realized by two coupling mechanisms: either voltage coupling or current coupling, depend only on global geometric features and are insensitive not only to the thermal state of the transmission line but also to certain random operation errors. Thus high-fidelity one-way quantum computation can be achieved.
文摘Nanofiltration separation has become a popular technique for removing largeorganic molecules and inorganic substances from water. It is achieved by a combination of threemechanisms: electrostatic repulsion, sieving and diffusion. In the present work, a model based onirreversible thermodynamics is extended and used to estimate rejection of inorganic salts andorganic substances. Binary systems are modeled, where the feed contains an ion that is much lesspermeable to the membrane as compared with the other ion. The two model parameters are estimated byfitting the model to the experimental data. Variation of these parameters with the composition ofthe feed is described by an empirical correlation. This work attempts to describe transport throughthe nanofiltration membranes by a simple model.
基金supported by the National Basic Research Program of China(Grant No.2014CB441403)the National Natural Science Foundation of China(Grant No.41175003)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Combined with the existing stochastic lightning parameterization scheme, a classic tripole charge structure in thunderstorms is assumed in the paper, and then 2-dimensional fine-resolution lighting discharge simulations are performed to quantitatively investigate the effect of lower positive charge(LPC) on different types of lightning. The results show:(1) The LPC plays a key role in generating negative cloud-to-ground(CG) flashes and inverted intra-cloud(IC) lightning, and with the increase of charge density or distribution range of LPC region, lightning type changes from positive polarity IC lightning to negative CG flashes and then to inverted IC lightning.(2) Relative to distribution range of charge regions, the magnitude of charge density of the LPC region plays a dominant role in lightning type. Only when the maximal charge density value of LPC region is within a certain range, can negative CG flashes occur, and the occurrence probability is relatively fixed.(3) In this range, the charge density and distribution range of LPC region jointly determine the occurrence of negative CG flashes, which has a linear boundary with the trigger condition of IC lightning.(4) The common effect of charge density and distribution range of the LPC region is to change the distribution of positive potential well of bottom part of thunderstorms, and inverted IC lightning occurs when the initial reference potential is close to 0 MV, and negative CG flashes occur when the initial reference potential is far less than 0 MV.
基金supported by the National Natural Science Foundation of China(52072411,51932011)the Natural Science Foundation of Hunan Province(2021JJ20060)the Fundamental Research Funds for the Central Universities of Central South University(2021zzts0093)。
文摘The electrochemical behaviors of battery chemistry,especially the operating voltage,are greatly affected by the complex electrode/electrolyte interface,but the corresponding basis understanding is still largely unclear.Herein,the concept of regulating electrode potential by interface thermodynamics is proposed,which guides the improvement of the energy density of Zn-MnO_(2) battery.A cationic electrolyte strategy is adopted to adjust the charge density of electrical double layer,as well as entropy change caused by desolvation,thus,achieving an output voltage of 1.6 V(vs.Zn^(2+)/Zn)and a capacity of 400 mAh g^(-1).The detailed energy storage behaviors are also analyzed in terms of crystal field and energy level splitting.Furthermore,the electrolyte optimization benefits the efficient operation of Zn-MnO_(2) battery by enabling a high energy density of 532 Wh kg^(-1) based on the mass of cathode and a long cyclic life of more than 500 cycles.This work provides a path for designing high-energy-density aqueous battery via electrolyte strategy,which is expected to be extended to other battery systems.
基金supported by the National Basic Research Program of China (973 Program,2007CB613303)the National Natural Science Foundation of China (20873053)
文摘By using the surface photovoltage (SPV) technique based on a lock-in amplifier, surface states located 3.1 eV below the conduction band of TiO_(2) have been detected in TiO_(2) nanotube arrays prepared by anodization of titanium foil in fluoride-based ethylene glycol solution. The photo-induced charge transportation behavior of TiO_(2) nanotube arrays was also studied by quali- tatively analyzing their SPV phase spectra measured under different external bias. When a negative bias was applied, carriers excited from surface states have the same transportation properties as those excited from the valence band; in contrast, when a positive bias was applied, these two kinds of photo-excited carriers exhibit different transportation behavior..