Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllabl...Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.展开更多
The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active ...The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active and durable fuel electrode.Here,we report a phase-transformed CoFe-Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(CoFe-SFM)fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(SFM)from a Sr_(2)Fe_(7/6)Mo_(0.5)Co_(1/3)O_(6)-δ(SFMCo)perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO_(2)conversion in RSOC.The CoFeSFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO_(2)conversion as demonstrated by the distribution of relaxation time(DRT)study and equivalent circuit model fitting analysis.Furthermore,an electrolyte-supported single cell is evaluated in the 2:1 CO-CO_(2)atmosphere at 800℃,which shows a peak power density of 259 mW cm^(-2)for CO oxidation and a current density of-0.453 A cm^(-2)at 1.3 V for CO_(2)reduction,which correspond to 3.079 and3.155 m L min-1cm^(-2)for the CO and CO_(2)conversion rates,respectively.More importantly,the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V.This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO_(2)reversible conversion.展开更多
文摘Highly efficient and stable bifunctional electrocatalysts that can be used for large-current-density electrolysis of alkaline seawater are highly desirable for carbon-neutral economies,but their facile and controllable synthesis remains a challenge.Here,self-assembled ultralow Ru,Ni-doped Fe_(2)O_(3) with a lily shaped morphology was synthesized on iron foam(RuNi-Fe_(2)O_(3)/IF)via a facile one-step hydrothermal process,in which the intact lily shaped RuNi-Fe_(2)O_(3)/IF was obtained by adjusting the ratio of Ru/Ni.Benefitting from the Ru/Ni chemical substitution,the as-synthesized RuNi-Fe_(2)O_(3)/IF can act as free-standing dual-function electrodes that are applied to electrocatalysis for the hydrogen evolution(HER)and oxygen evolution reactions(OER)in 1.0 mol L^(-1) KOH,requiring an overpotential of 75.0 mV to drive 100 mA cm^(-2) for HER and 329.0 mV for OER.Moreover,the overall water splitting catalyzed by RuNi-Fe_(2)O_(3)/IF only demands ultralow cell voltages of 1.66 and 1.73 V to drive 100 mA cm^(-2) in 1.0 mol L^(-1) KOH and 1.0 mol L^(-1) KOH seawater electrolytes,respectively.The electrodes show remarkable long-term durability,maintaining current densities exceeding 100 mA cm^(-2) for more than 100 h and thus outperforming the two-electrode system composed of noble catalysts.This work provides an efficient,economical method to synthesize self-standing bifunctional electrodes for large-current-density alkaline seawater electrolysis,which is of significant importance for ecological protection and energy exploitation.
基金financially supported by the National Natural Science Foundation (52002249,51402093 and 21706162)Guangdong Basic and Applied Basic Research Foundation (2019A1515110025 and 2017A 030313289)+3 种基金the Research Grant for Scientific Platform and Project of Guangdong Provincial Education Office (2019KTSCX151)China Postdoctoral Science Foundation (2020M682872)Shenzhen Government’s Plan of Science and Technology (JCYJ201803005125247308)Technical support from the Instrumental Analysis Center of Shenzhen University (Xili Campus) is also appreciated。
文摘The reversible solid oxide cell(RSOC)is an attractive technology to mutually convert power and chemicals at elevated temperatures.However,its development has been hindered mainly due to the absence of a highly active and durable fuel electrode.Here,we report a phase-transformed CoFe-Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(CoFe-SFM)fuel electrode consisting of CoFe nanoparticles and Ruddlesden-Popper-layered Sr_(3)Fe_(1.25)Mo_(0.75)O_(7)-δ(SFM)from a Sr_(2)Fe_(7/6)Mo_(0.5)Co_(1/3)O_(6)-δ(SFMCo)perovskite oxide after annealing in hydrogen and apply it to reversible CO/CO_(2)conversion in RSOC.The CoFeSFM fuel electrode shows improved catalytic activity by accelerating oxygen diffusion and surface kinetics towards the CO/CO_(2)conversion as demonstrated by the distribution of relaxation time(DRT)study and equivalent circuit model fitting analysis.Furthermore,an electrolyte-supported single cell is evaluated in the 2:1 CO-CO_(2)atmosphere at 800℃,which shows a peak power density of 259 mW cm^(-2)for CO oxidation and a current density of-0.453 A cm^(-2)at 1.3 V for CO_(2)reduction,which correspond to 3.079 and3.155 m L min-1cm^(-2)for the CO and CO_(2)conversion rates,respectively.More importantly,the reversible conversion is successfully demonstrated over 20 cyclic electrolysis and fuel cell switching test modes at 1.3 and 0.6 V.This work provides a useful guideline for designing a fuel electrode through a surface/interface exsolution process for RSOC towards efficient CO-CO_(2)reversible conversion.